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ABSTRACT

This thesis develops an approach to the construction of multidimensional stochastic models for
intelligent systems exploring an underwater environment. The important characteristics shared by such
applications are: real-time constraints: unstructured, three-dimensional terrain: high-bandwidth sensors
providing redundant, overlapping coverage: lack of prior knowledge about the environment: and
inherent inaccuracy or ambiguity in sensing and interpretation. The models are cast as a three-
dimensional spatial decomposition of stochastic. multisensor feature vectors that describe an uaderwater
environment. Such models serve as intermediatc descriptions that decouple low-level, high-bandwidth
sensing from the higher-level, more asynchronous processes that extract information.

A numerical approach to incorporating new sensor information- stochastic backprojectio,--is
derived from an incremental adaptation of the summation method for image reconstruction. Error and
ambiguity are accounted for by blurring a spatial projection of remote-sensor data before combining it
stochasticallv with the model. By exploiting the redundancy in high-bandwidth sensing. model certainty
and resolution are enhanced as more data accumulate. In the case of three-dimensional profiling, the
model converges to a "fuzzy" surface distribution from which a deterministic surface map is extracted.

Computer simulations dcrnonstrate the properties of stochastic backproJection and stochastic
models. Other simulations show that the stochastic model can be used directly for terrain-relatike
navigation. The method is applied to real sonar data sets from multibeam t i 2tric surveying (Sea
Beam). towed sidescan bathvmetry (Sea MARC II), toped sidescan acoustic 'm,., (Sea MARC I &
II). and high-resolution scanning sonar aboard a remotely operated vehicle. . isensor application
combines Sea Beam hathvmetrv and Sea MARC I intensity models. Targeted ieal-time application.
include ship board mapping and sur~ev. a piloting aid hr renotelv Opel ated ,e li,( .q ,1oI , I
submersibles. and world modeling for autonomous vehicles.
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Chapter 1

INTRODUCTION

In an age in which we have mapped the far side of the moon, still less than a tenth of one

percent of the ocean floor has ever been seen by human eyes. Yet. an increasing use of the oceans has

required a rapid expansion of our abilities to image the seafloor at a range of scales and resolutions.

Recent developments in advanced remote systems promise to extend our human perception to the deeper

ocean regions. but the ability of these systems to conduct successful and efficient research. exploration.

survey, work. or inspection demands an acute capability to "sense" and model the undersea

environment in real time.

Yet. as our understanding of subsea processes is refined and our questions become more subtle.

the limitations of individual sensors become more apparent. Considering the full scope of a detailed

site survev, for example, a gamut of sensors over different scales of range, resolution. and raw data

types must be accommodated. Fuch a mission is represented by Fig'.re 1.1. which sho,,s an

underwater vehicle equipped with a suite of remote sensors. These might include different sonar

(obstacle avoidance, down-look. sidescan), cameras (video. digital still), a scanning laser. iind sensors

to measure gravity, magnetic fields, temperature, salinity, and so on. Though a tethered renotelv

operated vehicle (ROV) is represented. the intended scenario also applies to a free-s'wimming

autonomous underwater vehicle (AUV) or towed instrument sled.

In all cases, this generic exploratory probe is capable of collecting an enormous amount of

multisensor data as it moves through the undersea terrain. The technology to generate this information

flow is here today: the challenge lies in developing new methods to integrate the data and to construct

high-level models of the environment that can be used by man and machine alike. Though there are

basic differences between sonar, video, and laser scanning, there is still much common ground in data

acquisition. signal processing, digital representations, archiving, and presentation. What we need to

-7 -



-4,

Figure 1.1: A generic multisensor exploratory probe.

take advantage of this commonalty for the synthesis of multisensor data is a consistent framework for

information management.

Such is the problem I address in this thesis---constructing multidimensional models of the

undersea environment with real-time multisensor data. Though I am mainly motivated by the needs of-

intellivent, autonomous svstems exploringz an unknown terrain. the approach is relevant to nian-in-the-

loop systems (ROV's and submersibles), and towed or shipboard mapping. Ihe impoilalnt

characteristics shared by such applications are: real-tinie constraints unstructured, three-diniesionil

errain high-hand,.idth sensors providing redundant, overlapping coverage: lick of prior knoledgc

allon the enironment-, and inherent inaccuracy or ambigutity in sensing and interpretation.
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The a.proach taken in this thesis is to form a model as a three-dimensional xpatial deconipoti6 )n

ot ,ubilcal .ol ume elements, or woxels. Associated kith each %oxel is a stochastic. multisensor feature

%ector iiat represents the propert., %.ithin the small region. The model is an intermediate. nunlerical

description that decouples low-level. high-bandwidth sensing from the higher-level, more aso\-cItonot

processes that ext act deterministic information-for operator displays, obstacle avoidance, or path

planning. to gixe a few examples. As new sensor information is acquired, it is merged using a

technique I call stochastic backprojection: this is derived from an incremental adaptation of tile

summation method for image reconstruction. Error and ambiguity are accounted for -, hurring a

spatial projection of remote-sensor data before combining it stochastically with the model.

Bv exploiting the redundancv in high-bandwidth sensing, the model's certainty and resoltion ate

incrementally enhanced as more data accumulate. This is in contrast with traditional approaches that

rely on extensive postprocessing to eke out information from sparse data sets. Also. bv taking

advantage of complementary inforr ation from different sensors, more complete and more accurate

models can be built. with less effort than for an exhaustive analysis of single-qensor data. For the real

data sets considered in later chapters, the computational efficiency is such that cost-effective applications

are fea-ible. and the quality and resolution of the models are appropriate to each.

The approach I take to modeling research relies mainly on a qualitative. %isual assessment of

results. On the one hand, this is important for ran-in-the-loop applications that are subject to the

same criteria of relevance and utilitv. On the other hand, vision has the highest bandwidth of all our

,enses, and offers a practical way to digest the large volume of information that a model contains

Such an approach has allowed me to quickly define the "envelope" of stochastic modeling-to look at

the big picture and spot important determinants of performance.

In the rest of this chapter I provide a more detailed background on the problem. discuss current

methods. and expand on the basis for my approach. The first section describes the under, ater work

environment for the three classes of systems that I mentioned: shipboard and towed systems. ROV"s

and manned submersibles. and autonomous undcrwater vehicles. Next. I draw an analogy between an

intelligent underw, ater system and a human being exploring unknown surroundings to stress the

advantages of a model-based approach. 1 ten discus. emerging technologies that make this approach

practical. and elaborate further on mv philosophv of modeling.

1.1 WORKING UNDERWATER

To further our national economic interests. 3hipboard and towed sensor packages will continue to

play an important role in mapping and assessment of seafloor resources. Maritime defense

-9-



requirements also call for a more comprehensive approach to tactical underwate: tc!t.t.n assessment.

dictating moi . sophisticated information management and multisensor approaches. Marine scientists

Cgeologists. archaeologists, and so on) will need more complete. more accurate. and more quantitative

information than is now available.

Yet. despite advances in underwater sensors and computational technology, data processing and

display techniques have changed little in the last two decades. Such two-dimensional seafloor mapping

tools as sidescan sonars. for example, typically use analog paper-chart recorders to generate the final

mapping product. Wide-area mosaicking relies on manual "cut-and-paste" methods and photographic

reproduction for data manipulation. Within the last few years. video displays. digital recording. and

image-processing techniques have come into use, but the basic approach is strongly linked to traditional

paper-based methods.

Three-dimensional survey methods are even less advanced. Though digital data recording is most

often used. postprocessing with manual intervention at every step remains the norm. Data products

emerge after weeks or months and much expense. For large-scale bathymetric surveying, systems and

processing tools are usually custom developed by end users or supplied as less capable add-ons from

hardware manufacturers, tailored to a specific sensor. For small-scale, higher-resolution mapping.

mainly used by the offshore industry, the only practical alternatives are "do it yourself" or rely on the

expensive, customized offerings of a few service organizations.

For manned systems that operate within the relatively opaque underwater medium. the need for

better environmental models is most strongly felt. In particular. researchers are hampered by the lack

of sensory information available to man-in-the-loop systems. The pilot of a submersible or ROV

suffers a tunnel-vision effect from the restricted sensing envelope of a viewport, camera, or sonar. The

ensuing disorientation has severe economic penalties in terms of work efficiency. and can lead to

damage or loss of a vehicle, For such systems, real-time processing of imaging sensor data is

nonexistent and there appear to be no new approaches on the horizon.

The operator of an ROV, for example, usually relies on a view offered by one or more video

cameras, sometimes augmented by a scann'ng sonar display. Under good conditions, low-light-level

cameras can have a range of ten meters. less for a color image. Commonly. though. visibility can be

restricted to less than a meter, especially when working near the bottom or in strong currents. Under

all conditions, the operator's perception of distance is degraded by optical distortion and monocular

%ision. These factors, along with - camera's narrow field of view and the apparent "sameness" of

underwater scenes. can quickly d', At a person at the controls.

- 10-



Sonar systems extend the range of perception. give a direct measure of distance, and open

another dimension under lo,.-visihilim, ,-nditions. Sonar. however, lacks the spatial resolution of a

camera and is less easily interpreted by a human pilot. In the absence of strong acoustic reflectors

with distinctive geometric properties, a vehicle's position can be haid to judge from the sonar display

alone. The problem is compounded by motion artifacts introduced by a dynamic platform.

A drawback to both sonar and visual techniques is the transience of information presented to the

operator. Though recorded or later review, front the pilot's perspective the data are continuously

discarded. It is the human's burden to assimilate the information and to form his own internal model

of the surroundings. In a terrestrial environment rich in sensory information, visual, tactile, aural.

and other cues arrive in a form readily integrable by a human processing system evolved to match the

task. But with already degraded sensor data collapsed to a two-dimensional form for video or sonar

display, the information-assimilation problem is formidable and worsened by the need for attention to a

complex system and to the immediate task at hand. The best ROV pilots seem to have a heightened

proprioceptive sense, which makes this job easier: but the information remains unavailable to the ROV

system itself, for example. to close position loops.

More direct ways of determining position underwater suffer from other limitations.

Measurements of attitude and vertical position are available from an accurate., cost-effective sensor

suite, however, horizontal positioning is more problematic. Acoustic transponder networks offer

repeatable performance over extended periods, but are time-consuming to position and survey: this

makes them uneconomical for small jobs at widely separated sites. Multipath and shadowing further

restrict their use in shallow areas or in a cluttered environment such as the inner volume of an offshore

platform. Inertial packages and doppler velocimeters are becoming more affordable for routine

underwater use but need external updates to offset drift.

The few autonomous underwater vehicles in operation toda; use little more than programmed

controllers to follow a pre-established track. The dominant issues in their dexelopment have been

hardware related-mainly power and communications. Usually the autoniomous designation really

means that they are untethered. and rely on low-bandwidth acoustic modems for intermittent

communications with a human supervisor at the surface.

To work without human supervision, a free-swimming robot must model its en\ironment and

locate itself while exploring the surroundings, especially if traversing widely for extended periods. As

AUV's evolve, they will need more sophisticated multidimensional models comprising multisensor data,

which let them respond to an unpredictable environment. The machine's computational model must

support such low-level behaviors as trajectory control or obstacle avoidance, and offer an approach to
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more comnpltx problems-path planning or other context-dependent strategies need some framework in

" hich to e alate alternatives,

What is needed is a comprehensive approach to modeling and positioning under'.ater-ne%%

tcchniques that turnish enhanced sensory cues for more efficient human piloting, and that generate

information in a form suited to automatic control systems as well. A cumulative sonar model, for

example. could be used to generate a screen image of the underwater terrain with a representation of

the \chicle superimposed. Digital position estimates, derived from a model of local features, could be

used directly for closed-loop position control: this could circumvent the need for external navigation

equipment in many applications.

In terms of end use, a distiaction between teleoperated and autonomous systems is largely

irrelevant. There is really a continuum of function that will serve man-in-the-loop systems and

facilitate a transition to more independent underwater robots. Unlike the laboratory environment.

oAhere an inestigator can walk down the hall to rescue an errant machine or to observe its behaior.

the ocean is a more inaccessible and hostile place. and it will force us to adopt different research

strategies. The gradual relinquishment of human control will be preceded by a more interactive phase

of sharing and trading control between man and machine [Sheridan, 1982]. Model-based imaging and

positioning could ease the load of a human operator. but are prerequisite to a robot in an unknown

terrain. A useful approach in both domains will help speed the evolution.

1.2 AN ANALOGY

To help put the problem in perspective, think about this analogy. Suppose we wanted to build an

underwater system that could sense its environment and construct a representation that could be

displayed to an operator. The vehicle might be equipped with a scanning sonar or laser rangefinder

and a suite of sensors to measure pitch. roll. heading, and depth. Because of the difficulty in

measuri-g hori-ontal position underwater, we would want the machine to estimate its location relatixe

to the surroundings, and use this estimate as it adds new range measurements to the model.

Now recall the senation of entering an unfimiliar room in near dirknev,-vour vizion ik

diminished and you rely mostly on touch. At first, your knowledge is limited to a few observations

about the boundaries of the space and of the objects it contains. Gradually. as you move about. your

awareness of spatial relalionships is enhanced, and confidence in your internal model gro'As.

Eentuallv. you move more quickh? and freely between known positions. axoiding obstacles, with only

occasional checks to correct your perceived location.
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.-\ similar internal model is responsible for our sense of visual acuity over a wide field of view.

though the full resolution of a normal human eye is limited to a narrow, forward-looking cone.

Optical illusions further illustrate the power of such models in shaping our human perception, (tor

examp!e, see Co,'nsw''et. 1970: Marr. 1982). As Winston [19841 puts it, image understanding ma, be a

form of "controlled hallucination." so that our perceptions are influenced by what we expect to see.

.My point is that this internal processing and representation results from our internal "wiring" as %ell

as from our experience, and usually enhances an ability to deal with a complex world.

1.3 A MODEL-BASED PERSPECTIVE

This human analogy is not meant as an argument for some anthropomorphic blueprint to build

the machine counterpart. but to point out important characteristics common to the two scenarios. The

main idea is that each approach is centered on an internal model of the environment. For the

automated version, this is an intermediate representation describing the distribution of surfaces that

reflect energy from the rangefinder. Information is lost as the raw sensor data are conden-ed and

coerced into a new form. But if the structure is more appropriate to interpretive processes that

"extract" information from the model, then system productivity may be enhanced.

A model can also fill in gaps left by degraded sensors or represent regions beyond their

immediate field of view. For example. a graphic display created from a sonar model could be used for

piloting in low-visibilit, situations. Even under ideal conditions, a representation of objects outside the

camera's narrow viewing envelope would reduce an operator's sensation of tunnel vision and lessen the

danger of entangling a vehicle's umbilical cable. Fully concurrent modeling and positioning. like that

of the semiautonomous navigator sketched in our analogy, could start to take on part of the human

pilot's load.

Autonomous vehicles that develop beyond the primitive capabilities of those today will need more

comprehensive systems of representation. The models will have a high dimensionality, that

encompasses many different sensors-redundant and complementary types. But to be successful. the

modeling also must account for the noisy, blurry, inaccurate, incomplete, and sometimes conflicting

reports from many nonideal sensors. As new information is added, some notion of probability.

possibility, or plausibility must be maintained and updated. Deterministic conclusions. if needed. are

the venue of interpretive or evaluative processes.

These processes, which reference the model and act on their "interpretations." can be seen as a

mechanism for closing the information loop. In the positioning example, there is a two-wa', flovw of

information between model generation and "perception" of sensor orientation. Registration of range
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.2rns de--'"ds on i knowfledge of sensor position and attitude. Conversely. estimates of sensor

location are eNtracted relative to the model. In such a technique there is a threshold of error beyond

,,hich the algorithms will diverge. An implicit a.mp:o, s that ,.'nmtaI f.itres are distinct

enough to allow unambiguous position referencing.

An AUV especially must be able operate in a region where no prior map exists and must

accommodate unstructured underwater features. At powerup or in recovering from a failure, for

example. the system must use some strategy to bootstrap into an awareness of the surroundings. Still.

an expert knowledge of each sensor and its medium is required, and specific knowledge about the

environment ought to be integrable with the model whenever useful.

As in human learning, the model should grow incrementally, converge toward some useful

representation of the sensory data being conserved, and allow us to draw conclusions at any time front

all information on hand. Real-time performance is an important issue since a practical system cannot

adopt a stop-and-go strategy with several intervening seconds of intensive computation. For that

reason. modeling and interpretation processes must he computationally efficient or have a suitable

decomposition for parallel or application-specific processors. For example. by decoupling high-

bandwidth, real-time sensor requirements through an intermediate model. information extractors and

synthesizers may function in a more asynchronous manner suited to their task or hardware base.

The main point is that a model provides a powerful. unifying framework in which such processes

can operate. The human brain is the site of much of our internal model, though research is beginning

to unravel the complex interactions between later, more cognitive representation/processing and early.

lower-level components, which are more closely related to our sensors [Grimson. 1980: Marr. 19821.

Most approaches to world modeling or machine vision take a high-level approach. in which the

surroundings are represented as an assemblage of features-edges. corners. surfaces--or objects. In

part. this may have been because of the economy of such representations in an era when sensor data

were sparse and computational resources precious. As I make clear in the next two chapters. the

models I consider are formed at a much earlier, or lower level.

1.4 EMERGING TECHNOLOGIES

Any technological constraints on the realization of such an approach are rapidly diminishing.

New high-bandwidth. high-resolution sensors generate an enormous amount of data sometimes destined

for postprocessing. but often relegated to the archives. Cost-effective sensor suites for attitude. ielocit,.

and acceleration permit new approaches to the problems of misregistration and motion artifacts

introduced b, dynamic sensor platforms. And the computational resources that will let us take
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advantage of this 9]ood of information are here as 32-bit CPU's, cheap memory, and high-performance

graphics.

Because or the ocean's relative opacim to electromagnetic energy. sonar has enjoyed a prosperous

historv since its introduction in the early part of this century (Horton. 1959" Urick. 1975]. Originally

dri.en mainly by military applications, the field has spawned a family of systems suited to a wide range

of uses [Sutton. 1979]. from seafloor mapping and imaging [Tvce. 1987: Davis er al.. 1987] to search.

classification, and navigation for submersibles and unmanned vehicles [Cyr. 19871. Along with lower

cost, the trends toward high information rates, narrow beam width, light weight. low power, modular

design, and digital interfaces [Baggeroer. 1978: Cyr, 1987] are expanding the role of acoustic sensors

in the underwater domain.

Still, acoustic methods for underwater use are less advanced than those of medical imaging [Lee

anid Wade. 1986: Ferrari, 1987] because of fewer driving interests, lack of fiscal support. and more

severe environmental constraints [Sutton. 1979]. Ultrasonic techniques used in medicine include

[Havlice and Taenzer. 1979] reflective (pulse-echo) imaging, direct transmission imaging. tomography

/time-of-flight. attenuation. reflection, diffraction), holography. interferometry. and Bragg-diffraction

imaging. Acoustic methods are also highly developed for applications in nondestructive testing ]KiKo.

1979]. Nevertheless. research in underwater acoustics is continuing and improvements in techniques.

in technologies, and in matching system performance with human needs should lead to more effective

underwater imaging systems (Sutton. 1979].

Once confined mainly to large. expensive military systems. sonar arrays and sophisticated

processing have moved into the commercial world. Preformed-multibeam and phase-comparison sonars

are supplanting fixed-beam and mechanical-scan sonars in an attempt to increase the information

content and data rate of acoustic sensing. Though the theory has preceded their implementation bw

many years, such approaches to two- and three-dimensional sonar imaging as acoustic lenses (Ilh'hr.

1987a, b]. spatially encoded waveforms [Jaffe and Cassereau, 1988], and holographic techniques

(Collils. 1987] portend even higher bandwidths for underwater acoustic sensing.

For long- and medium-range sensing underwater, sonar provides the only reasonable option.

Though svstems operating in the 1-5 MHz frequency range will also see service as high-frame-rate

imaging sonars, developments in underwater scanning-laser technology offer an alternatiie with simila;

range capabilities but with higher angular resolution [Di.xoll et al., 1983: Klepsvik cI a/.. 1987:

Henlderson. 1988]. Advances originally aimed at medical users (primarily the diode-pumped.

frequency-doubled Nd:YAG laser) have greatly alleviated the power and size constraints faced by earlier

researchers [Holmes. 1986]. New digital cameras with unprecedented sensitivity and dynamic range

[Harris ei al.. 19871 are further expanding the domain of optical imaging underwater.
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Parallel de'xelopnents : position and attitude measurement are enhancing our capabilities for

tracki lg. !,Anin, and control of undervater platforms, though horizontal positioning will continue

to he an issue [Jch'wr t't 01.. 1)87]. Attitude sensing is a mature technology, and 3-axis measurements

ot angular position and velocitv are available from compact. inexpensive packages. Rate sensors

mechanical gyro or as-rate transducer, for example) updated with an absolute reference (magnetic for

%,,%a. gra,.imetric tor pitch and roll) can be accurate to a fraction of a degree in a strapdown package.

.A\s the cost of laser-ring and fiber-optic rate sensors falls, the low drift rate and sensitivity of

these devices will make a strong contribution to the performance of affordable inertial navigation

s,.stems [Tusttse and Caini. 1987: Johnson and Eppig. 1987]. Velocity-aided inertial navigation (using

doppler or correlation vlocity logs. for example). combined with a model of the platform dynamics.

will let a vehicle navigate by dead reckoning for periods of time ranging from minutes to hours, even

days. depending on accuracy requirements. As with attitude sensing, though, such systems drift and

need a periodic update from an absolute frame of translational reference.

Along the vrtical axis. pressure sensors or acoustic altimeters (up- or down-looking) offer

satisfactory solutions for most applications, but lateral positioning has always posed a challenge.

Acoustic positioning systems are the workhorse of the industry and include long-, short-, and super-

short-baseline types. These typically span a range of accuracy and coverage from about 5-10 m at 5

km. to less than a meter for higher-frequency systems over a few hundred meters, though newer

approaches offer still greater accuracy [von der HeYdt. 1985]. Even higher-frequency systems, with

baselines of a hundred meters or less, are now demonstrating an accuracy to within a few centimeters

[Haht et al.. 1985].

Geophysical navigation, usually by feature correlation, evolved mainly under military auspices but

has started to arouse interest in the civilian sector [Gever et al., 1987]. Bathymetric navigation, where

a sequence of sonar readings is correlated with a pre-stored map, is also used in seafloor mapping

applications to supplement satellite fixes [Fyce. 1987: Nishimura and Forsvth, 1987]. Magnetic terrain

navigation, using similar principles but a different geophysical feature. is enjoying recent interest

[Tvrert. 1987: PIvaia. 19871, particularly since it is a passive sensing modality and suited to covert

applications. Gravimetric navigation is another possibility, but field results have been less encouraging

than those iinE mnanetic techniques I'Gever t' ol . IQ971. The accuracv of all ich techniqties

depends on the spatial bandwidth and distinctiveness ot geophysical features.

To keep up with these high-bandwidth remote sensors. and to take advantage of position and

attitude information for improved composite imaging, calls for computational resources that have been

beyond the reach of many applications before now However. the steady gains in price. performance of

digital technology, especially with the advent of cheap 32-bit computing. ha%e set the stage for more
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,ophisticated approaches to underwater modeling. Even real-time processing is within reach for many

applications.

On the one hand. the continuing evolution of faster, more inexpensive memory devices lets us

take advantage of the extended address space of new-generation microcomputers. Though

unremarkable in the mainframe world, the size and complexity of our models. and of our development

tools (UNIX. for example). only recently have become practical on an interactive, personal system.

On the other hand, new graphics hardware and techniques offer the only reasonable approach to

digesting the huge amounts of data these powerful machines can generate [CG&A Sraf, 1987: Stewart.

1987b].

1.5 A DIFFERENT APPROACH

Research for this thesis proceeded from the premise that the technological obstacles to more

sophisticated underwater modeling are no longer significant, or are rapidly diminishing. Also. our

understanding of the physical processes that govern the sensors and their medium is such that we

should be able apply this knowledge to the raw sensor data to enhance the information available to the

system. What we lack, though. are the computational tools or. more precisely, the sets of tools that

will let us take advantage of the diverse, high-bandwidth data at our disposal.

The results of this thesis research show that existing sensor and computational technology is such

that sophisticated. high-resolution. multisensor modeling is within reach and can be accomplished in an

incremental, real-time manner (see also Stewart 1987a. b. 1988). The basis of this new approach is a

probabilistic, spatial decomposition strongly suited to amorphous, underwater terrain. Such a

representation is an aggregate of sensor data obtained locally, but may incorporate prior information

from other kinds of models (for example. a CAD model of an offshore structure or an underwater-

terrain database). Besides a quantitative facility, an advantage of the technique is that the probabilistic

framework explicitly represents the quality of information in the model, and the uncertainty imposed by

the sensors, a dynamic platform, and the environment itself.

For the manned qcenario descrihed earlier, the model haq been ii-ed to generate in a1iliarv

piloting display, from a global perspective, showing the vehicle and its relation to objects be ,ond the

operator's field of view. The operator can benefit from a greater efficiency in task positioning. reduced

transit times between work sites, and a lowered operational risk. Depth and range information can be

provided using color contour maps or a shaded perspective view. Such an auxiliary display gives the

pilot a more easily assimilable representation of his surroundings. and as the model's certainty

increases, can be used directly for low-visibility piloting.
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Cl nodel ing results , ith real systems suggest benefits in large-scale underwater mapping

pications--iualit.. of the final product is improed and real-time processing reduces delay and

\peflse in the postprocessilg tedium. The technique is also demonstrated with multisensor processing

of iniaging ksidescan) and protiling tinultibeam bathymetric) sonars. to take adantage of the

'upletnenta char acteristics of each sensing modality. The stochastic modeling app-oa',.' has been

deeloped with ,such applications in mind. and is largely independent of scale, resolution, and sensor

types.

Toward such an end. this thesis develops a philosophy of acquiring, processing, and representing

information in a multisensor environment for consumption by high-level processes that interpret the

information and act on it. The main tenets that shape this approach are:

1 The broad concept of a model provides a powerful framework for organizing our information

about the environment and in assessing our understanding at any time. The most appropriate

form is an explicit stochastic representation that accounts for the inaccuracy and uncertainry in

our sensors and techniques.

2. In contrast to most approaches underwater, which often assume sparse information, there is a

great deal of redundancy in this high-bandwidth data. By applying a knowledge of the sensors

and media, we can exploit this redundancy to enhance the resolution and certainty of our

models.

3. A realistic approach to more sophisticated undertakings must deal with information from man\-

different sensors, redundant and complementary types. Multidimensional models and

representations will be an essential part of more intelligent underwater systems.

4. There is no all-encompassing representation or processing paradigm to serve all purposes. so

models and modeling processes will be largely domain-specific. At the same time. we should

strive for a generality and consistency that lets us move conveniently among different

representations and modeling domains as ineeded.

5. Model hiiilding is a simple kind of "learning" in which information iq combined and

accumulated to enhance the fidelity of our representation. As such. the approach should

incorporate tools that are incremental and capable of real-time performance with modest

computational resources.

6. In the end, postprocessing methods are capable of producing more faithful descriptions--mote

time and processing power can be brought to bear. and an inversion of all data can be
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performed in aggregate. So for situations in which real-time feedback is essential (or useful). a

tradeoff in fidelity against performance is inevitable and acceptable.

1.6 DOCUMENT ORGANIZATION

In the next chapter, what is meant by a model, in the contcxt of this dissertation, is made more

precise. and the more general modeling issues are presented. I also discuss the need for good

representations and the distinction between the representation and the model itself. With this as a

basis, different types of representations are discussed along with their use in modeling uncertainty.

The chapter concludes with an overview of previous approaches to representing the surroundings. taken

mainly from the world of terrestrial mobile robots.

Using the context developed in the second chapter, Chapter 3 introduces the more specific

modeling constraints characteristic of an underwater environment, and applies them to the selection of

an appropriate modeling representation. Computational and architectural issues are examined and used

to define the general analytical framework. Finally, the framework is applied to examples of active

sonar evzing and model building in the acoustic domain.

The two following chapters describe the results of computer simulations and field applications

with a single remote-sensing modality. Chapter 4 deals mainly with computer simulations of open-loop

modeling, in which all information used to build the representation is derived from sensor data. Other

simulations show the feasibility of positioning with a stochastic model, and some implications of the

approach are discussed. In Chapter 5, four real-world data sets, from profiling and imaging sonars.

are used to confirm the results of model-building simulations.

Chapter 6 describes a higher-dimensional approach to integrating data from different sensing

modalities. General issues are discussed and an overview of current techniques is given. An example

using sonar bathymetry and sidescan imagery is used to illustrate the approach. The final chapter

summarizes thesis results, discusses the limitations of the current implementation. and raises other

issues to be addressed by future research. The chapter concludes with a discussion of more general

oinderwattr applicrtions and forthcoming miltiensor qv,tems.
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Chapter 2

MODELING ISSUES

In this chapter. I explain more precisely what I mean by models and representations. and discuss

the different types, levels, and coordinate systems of each. After this discussion. I give a brief

o',erxiew of alternatives for representing uncertainty in robotics applications. The remainder of the

chapter is devoted to a survey of the different approaches to modeling a three-dimensional environment.

This includes a discussion of image reconstruction from projections and more general incremental

reconstruction techniques. Finally. I describe different methods that have been applied to mobile

robots, most come from the domain of terrestrial robots, though a few approaches to autonomous

underwater vehicles are considered. The purpose of this discussion is to establish a context for the

ideas to be developed in Chapter 3. and to provide references to alternative methods.

2.1 INFORMATION PROCESSING

In the first chapter. I described several scenarios involving instrument platforms acquiring

sensorv data underwater. The manner in which these data should be stored and manipulated depends

on the reasons for collecting the data and on their end use. For a geologist, a survey goal might be the

construction of a bathymetric map to further his understanding of seafloor processes. For the pilot of

-in ROV. the information could he used to help navi ate in a local area. An AITV could build an

internal representation of the surroundings tor path planning through an undei-ea iciu;in I li

common thread is that of compiling knowledge about a previously unknown, or lirtle-knoAn.

environment into a useful description.

In simple terms [Marr. 19821. we want to know what is where-to build some description of

environmental properties with their spatial (and sometimes temporal) distributions, In the simplest

case. this could be just the shape of the seafloor itself. More informative description, might inchlude
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surface scattering properties with respect to different energy sources (optical and acoustical, for

example). temperature, chemical makeup. and so on. This can be extended to subsurface structure or

to the composition of the seawater itself. In a general sense, such descriptions can be thought of as

'nodels. which embody knowledge or information about the world.

In the context of this thesis, what I mean by nodel building, or modeling, is the incremental

aggregation of information into a stochastic description of the environment. By information. I mean

any source of knowledge that reduces uncertainty in the model. In spirit, this is akin to Shannon "s

[1949] classic definition, though a rigorous usage is not implied. I also make a distinction between the

data (digital bytes. for example) and what they tell us about the world. Ultimately, the information we

are able to extract from the data depends on our understanding of the sensor, its medium, and how the

two interact. In other words, our physical model of the sensory process is a source of prior knoxledge

about the world, which can be applied to the raw sensor data to enhance the information available to

us. This is a forward model, in the usual sense, which guides our inversion of the data in the context

of a specific model-building process.

Usually there are different ways of managing and storing the information that lend themsel\es to

different goals or end-uses. For example, an optical image of a particular scene can be maintained as a

photographic negative, a positive print, an analog signal on a video disk. or a collection of digital

intensity values in computer memory. In the digital case, there are several more alternatives to

consider. including two-dimensional arrays. quadtrees. run-length encoding, and different statistical

coding techniques [Pratt. 1978: Stoffel, 1981].

We see intuiti'ely that the information content for each is roughly the same: what differs is the

particular scheme by which it is represented. The choice of any one for a given application depends on

how the data are manipulated and on whAt information needs to be made explicit. A photographic

print, for example. is a convenient way to represent images for human viewing: it is inexpensive.

portable. and immediately understandable. Digital images offer much greater flexibility for machine

manipulation and processing, but different digital representations serve different needs. Statistically-

encoded image data has a compact format for storage cr transmission, but a two-dimensional array is

suited to an image operator such as a Fourier transform.

In overall philosophy, the approach developed over the course of my research has acquired a

flavor similar to that of David Marr. who wrote as introduction to his book on vision [Marr. 1982]:

Vision is therefore, first and foremost, an information-processing task, but we
cannot think of it just as a process. For if we are capable of knowing what is where in
the world, our brains must somehow be capable of representing this information-in
all its profusion of color and form. beauty. motion, and detail. The study of vision
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mus, therefore include not only tile study of how to extract from images the various
aspects of the world that are usefui to us. hut also an inquir into the nature of the
internal representations b- . .hich we capture this information and make it available as
a basis for decisions about our thoughts and actions. This dualirv-the representation
and the processing of information-lies at the heart of most information-processing
tasks and A ill profoundly shape our investigation of the particular problems posed by
vision.

Though Marr's perspectie is shaped by machine-vision research, his point about the duality of

processing and representation is equally relevant to multisensor modeling, if not more so. The type of

representation ske use determines what information is made explicit in the model: the purposes for

wAhich a model can be used and the efficiency with which those purposes can be accomplished follow

directly from that choice of representation.

Though the focus of this thesis is on building models, this is not an end in itself. Aside from

providing an efficient framework for the aggregation of information, the representation must serve both

human beings and machine processes that use this knowledge to understand the environment, to make

decisions. and to act. For these important reasons I place much emphasis on representations in this

,ind the nest chapter After elaborating more on models in the next section. I describe the types of

representations and |epresentational primitives as a basis for comparing the work of other researchers.

With this as background the first part of Chapter 3 discusses the particular constraints of modeling

undersater and their implications for the ,.olumetric representation I adopt.

2.2 TYPES OF MODELS

A ,node! is an listac'e of a particular representation that encapsulates some body of knowledge or

information about an entity or process of interest This definition .si broad enough to subsume the

general usage as it applies to an engineer's or artist's model that guides the realization of a full-scale

project. It is a description of or substitute for the real thing. In another sense. it describes a process

,. abstraction. for example. an economic model of the world marketplace. An analvtical model.

sometimes represented by an equation or by a computaijonal algorithm, captures an ,!nderstanding -t

the ph\,ical ,.orld as, for example. an acoustic model of sound propagation in the ocean.

.\ pat.iclar ph sical model of importance to this thesis is referred to as a W'7So' '',odd. Thi

t.corprorate, uch parameters as the ,ampling enselope (heam pattern and look direction of a sonta . toi

',.ample . re-olution, accurac,., and so on. Loosely speaking. it also relerq to the noise and distortion

ntii lu ed h% the %\ tem or the medium The model should also include some chara. eri-ation ol the

lincertaints in an, real-skorld sensor



In the fields of Artificial Intelligence (Al) and Robotics, model is typically used to denote a static

description derived from prior information about the world. In this sense, the model is often employed

tor oliect recognition by template matching [Grimnson and Loza;io-'erez. 1983: Shm'ter et Cd.. 1986:
1.fV(c,'' ,IM1, Vt1/1iU1. 1987] or for navigation by correlating sensor data with a pre-stored map of the

environment [ Ilijcr. 1984: Drnm/hller. 1985: %farce and Julliere. 1986].

Since this thesis is about models and modeling. I will be explicit when my usage deviates from

the definition given in Section 2.1. When not stated otherwise, though, model will refer to an

aggregation of sensory information that describes the environmental parameters of interest. In contrast

with the often-used A!'Robotics term. the models that this thesis treats are dnwnaic descriptions that

reflect the rotulitv of jb'mratiot at any moment. Such a model could incorporate prior knowledge at an

initial state, but would be updated continuously as new sensory information arrived.

It is also appropriate to distinguish image processing from modeling. For the most part. image

processing refers to a body of techniques that transform, encode, or transmit information already in the

image data ['ratt, 1978: Stoffel, 1981]. This is not to say that an understanding of the physical basis

for image formation is unimportant to the development of image-processing techniques or

implementations. Rather. the priorities of image processing have to do with the images themselxe. not

w.ith their use in building a description of the world.

2.3 REPRESENTATIONS

As indicated in Section 2. 1, a representation is a set of convetions about how to describe a class

of things: a description, or a model, uses the conventions of a representation to characterize some

particular thing [Marr. 1982: Winston. 1984]. Though there may be many ways to represent a feature

or object of interest, from a practical standpoint the choice of representation can have a strong

influence on the tpes of processing the model can support and on the efficiency with which it can be

implemented. A particular approach to the representation of knowledge must then be guided by the

context in which data are acquired. manipulated, and presented.

2.3.1 Types of Representation

In general, representational schema may be broadly classified as propositional and aiialott

[Ballard anid Brown. 19821. The low-level models I begin to formulate in the next chapter use an

analogic representation since they are suited to the description of physical or geometric properties of the

environment. The% can be used to describe spatial or temporal relationships aniong different
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pi ope a:.r: characterize each propert. over a range of continuous or discrete values. A bathvmetric

map, toi cxail le, describes the spatial distribution of depth over some area. and at each point any one

ot man% possible depth %alues can be specified. Ballard and Brown characterize such analogic

representations b:

Coherence: Each element of a represented situation appears once. with all its relations to other

elements accessible.

Continuity: Analogous with continuity of time and motion in the physical world: permits

continuous change.

Analogy: The structure of the representation mirrors the relational structure of the represented

situation: the representation is a description of the situation.

Simulation: The models are interrogated and manipulated by arbitrarily complex computational

procedures that often have the flavor of physical or geometric simulation.

Propositional models comprise assertions about the world that are either true or false. Such

representations are most often used by high-level, semantic world models. Since I elaborate on this

distinction between high- and low-level modeling in the next section, and refer to such propositional

models in the later discussion of other approaches. I include here the characteristics attributed by

Ballard and Brown:

Dispersion: An element of a represented situation can appear in several propositions. However.

the propositions can be represented in a coherent manner using semantic nets.

Discreteness: Propositions are not usually employed to represent continuous change. However.

they may be made to approximate continuous values arbitrarily closely. Small changes in the

representation can thus be made to correspond to small changes in the represented situation.

Abstraction: Propositions are true or false. They do not have a geometric resemblance to the

situation their structure is not nlqlogous to that of the situation.

riference" Propn-itionnl nmdek are ninoipulnted Ili, more or le- uniform conipritlionz l11

implement ru/es of infrrence allowing new propositions to be developed from old ones.

As Ballard and Brown [1982] point out, each type of model derives its "meaning" differently.

However. in computer implementations especially, the two representations only differ essentially in the

last two points, and it is often possible to transform one representation tG the other without loss of

information.
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2.3.2 Levels of Representation

Machine perception can be considered as a mapping of sensor input to a description of the

environment. In other words, given some collection of sensory data. the problem is to attach some

meaning (or to extract information) by relating it to existing models of the world. In general. this is

not a direct process, but a sequence of transformations over a range of representations. The process

usually proceeds in a hierarchical manner from low-level, physical descriptions to higher-level, more

objective, or cognitive interpretations of the surroundings. Low-level representations and processes

tend to be purely analogic: high-level representations and processes tend to be both analogic and

propositional [Ballard and Brown, 1982]. As in the human visual system. though. the flo\ of

information is not necessarily unidirectional. Lower-level interpretations may be guided by prior

knowledge embedded in the upper levels of a hierarchy [Marr. 1982].

Marr's [1982] hierarchical paradigm for vision includes four coarse levels beginning with the

inoge. represented as a collection of intensity values. Moving up the hierarchy. the primal sketch

carries information about two-dimensional features in the image. including edge segments. blobs.

discontinuities. and boundaries. The 2!,-D sketch describes such surface attributes as local orientation.

depth discontinuities, and distance from the viewer. The three-dimensional model describes shapes and

their spatial organization in an object-centered coordinate frame.

Ballard wd Brown [1982] take a similar view starting with low-level generalized images-iconic.

analogic representations of the input data. At this level, intrinsic images, which reveal physical

properties of the scene (surface orientation, range, or surface reflectance), are contrasted with the raw

sensor images. Segmented images. at the next higher level, are formed from the generalized images by

gathering their elements into sets likely to be associated with objects. Geometric representations capture

two-dimensional and three-dimensional shape. At the highest level, relational models are complex

assemblages of representations, often using prior knowledge and models acquired before the perceptual

experience.

For the purposes of this dissertation, I define a slightly different hierarchy. which overlaps with

the two I have just discussed. There are two motivations for doing so. First. a characterization hv

images is inappropriate for many sensing modalities. An image impliee an ar;, 1,t , +gzr1 -f., I.,,1I

in a "snapshot" mode when sensor platform dynamics can be ignored during the interxal in ,khic.h the

image is formed. The sampling rate of a single-beam sonar (sidescan or sector-scan, for example) is

limited by the speed of sound in water and. depending on the range. can take several seconds to finish

one ping cycle. Tactile sensing offers another example. Second. a more general characterization
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pro. ides a ccntext for discussing the work of other researchers who often use their own unique version.

At the lower levels, this characterization is similar to that described in Henderson el a/. [1987]

Data level: Corresponds to the raw sensor input. No inversion is performed.

Physical level: Physical models are used to invert the raw data for the extraction of such low-

level intrinsic properties as scattering strength, surface reflectance, or texture.

Feature level: Physical- or data-level parameters are grouped locally to extract such primitive

features as edges, surfaces, regions, or blobs.

Object level: Lower-level parameters are used to segment the model into distinct entities.

Semantic level: Feature- or object-level primitives are classified and interpreted according to a

prior model and may be assigned "meaning" or inherit the propositional characteristics of their

class.

In most real applications, the distinctions among such categories tend to blur. At the data level.

for example. sensor subsystems often perform partial inversions based on a crude model of the

medium-sonars may apply a time-varying gain (TVG) to compensate for scattering and absorption. or

return one range value based on an assumed speed of sound and scattering threshold. At the higher

levels, it is often difficult to classify a particular researcher's approach because of the bidirectional flow

of information.

For convenience, I further divide the use of representations into low- and high-level methods.

Low-level techniques mainly use the first three kinds of representations and are most often purely

analogic. High-level approaches concentrate effort at the top three levels of the hierarchy. often

incorporate propositional information, and tend to make use of prior models. The overlap at the feature

level is intentional since some instance of this representation can be found in most implementations.

2.3.3 Spatial Representation

Spatial reasoning ik recognized a an important part of man' cognitike procezez innl. eernimne tN

nearly every line of Robotics research (for a collection of papers on spatial reasoning and nitiltiseiZor

techniques. see Kak and Chet. 1987). Implicit in most representations. at all levels, is a mechaiknim

for detining the spatial relationships among the different bits of information. At the most basic level of

interest. wAe want to discover the shape-the geometry of a physical surface-of the seafloor and its

features. For other kinds of models. we usually need to describe the spatial distribution of certain
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parameters-bottom backscatter. temperature and salinity in the water column, or the flora and fauna

of a benthic ecosystem, for example.

Shape information has a special character because, unlike color or visual texture information, the

representation of most kinds of shape information requires some kind of coordinate system for

describing spatial relations [Marr, 1982]. It is an intrinsic property of three-dimensional objects: ii a

sense, it is the primal intrinsic property for a sensory system from which many others (surface

normals, object boundaries) can be derived (Ballard ad brown, 1982].

In designing a representational system for machine modeling, we need to consider: (I) the

representation's primitives, the primary units of shape information used in the representation: and ,'"

its coordinate system, which defines the spatial relationships among the primitives. .i particular. a

robotic vehicle operating in the undersea environment must be designed to confront a three-dimensional

world. For this reason. I confine the following discussion tn three-dimensional representations (for

further detail and expanded references to two-dimensional representations. see Ballard and Brou'n.

1982: H'insion. 1984).

Representational Primitives

The fiJds of computer graphics, computer-aided design, and pattern recognition/image

processing have extensively investigated the issues associated with representational schema, and the

term computational geometry has come to identify the branch of computer science research dealing with

the problems of representing. manipulating, and generating internal models of geometric objects

[Bajcsv. 1980: Posdamer. 1981" Srihari. 1981: Ballard and Brown. 1982. Whiston. 1984: Best and JAm.

1985]. Broadly. three-dimensional geometric primitives may be categorized by four principal classes

[Posdatner, 19811:

Faceted representations: Faceted representations approximate the bounding surface of an

object. This is typically represented by a set of planar regions, each corresponding to part of

the surface. Each region or face may be maintained as an ordered list of vertices, the

connections between successive vertic e being finite line segments or edges.

Fiinctional representatinn,: Con-ider a function that generates point, in 3--pace ai it ik

evaluated over a bounded range. There may be one, two. or three independent \ariables that

generate a space curve, surface, or free-form solid. The surface may be used in a manner

similar to the faceted representation, producing a surface model of patches joined at space-curve

edges.
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( 1u) ir representations: ,-\ cellular array is a regular spatial structure in which each cell is

unUJtLW)% labelled b; an integer triple (the indicial vector). Tile neighborhood associated with an

tildicial ector is its voiwrne t ' t'icl. or vo.t '. Explicit geometry and implicit topologN are

pecified by an enumeration ot those cells occupied b' the represented object Such an

en umeration may be specified I, listing the cells. or by a three-dimensional array. Other

methods of indexing inc!ude dope vectors, marginal indexing, and octrees (Srihari. 19811.

Procedural representutions: Procedural methods use solid primitives, parameterize the

primitives to generate instances, and define operators for combining insia0lc.s to fc.-r. , n' m ol

The description of an object comprises a set of instances and the appropriate operators for

combining them.

Coordinate Systems

In engineering terms, we usually think of coordinate systems being categorized as Cartesian.

polar, spherical, and so on. However. a choice among these is largely determined by mathematical

conenience. and transformations between any two can be carried out by purely mechanical operations.

In the design of a representational system for machine perception. though. more fundamental issues

must be faced when evaluating the tradeoffs between view-centered and view-indepeadent coordinates on

the one hand, and between relative and absolute coordinates on the other. Some researchers choose

different combinations, and others dispense with a geometric coordinate system altogether.

View-centered coordinates offer a natural framework at the sensor level, and are appropriate to

such low-level operations as image processing and feature extraction. Marr's [19821 primal sketch and

212-D sketch use such a coordinate system since the data manipulation is intimately related to the

process of image formation. The main problem with this approach at higher levels of processing-

object recognition or terrain navigation, for example-is that the description of an object or a scene is

sensitive to the viewer's position and attitude. Matching or correlation requires extensive search or

iteration over all unconstrained translations and rotations.

View-independent coordinates are used to overcome this problem by establishing an obi('wt-

('1 ered or global frame of reference. In describing the shape of a highly symmetric object, a ciar.

for example. the choice of an object-centered coordinate system is ohvious and corre-pondz ,, 0- ... 1

defined principal axes. However, objects with many or poorly defined axes-like a sphere. a criuetlt'd

newspaper, or unstructured underwater terr:ain-lead to ambiguities (Mar. 19821. Another ikre in

the use of such a canoical coordinate frame-a frame uniquely determined by the shar, itself-i that

the shape must he described before the frame can be set up [Mart. 19821.

- 28 -



In building an aggregate model of discrete objects, images. or static scenes, another choice must

be made between a common (global, absolute) frame of reference and a distributed (local. relative)

coordinate system. In the latter, each distinct entity has its own natural coordinate axes: these are

usually linked bv transformation matrices specifying the relative translations and rotations among the

model's constituents. For high-level representations, there are advantages to this approach: each

object's description is stable, unique. and completely self-contained (Marr. 1982]. However. at the

lowest levels of m-deling, which may comprise many primitives or bits of information, the extra

overhead incurred by explicit representation of spatial relationships may extract a large penalty in

Another alternative is to use a purely topological approach devoid of any geometric description.

A graph or network. in which each node represents an object or primitive, can define the connectivity

or adjacency in a relative sense. For certain high-level applications, this approach can distill the

essence of spatial relationships and avoid much of the transformation overhead in a distributed

coordinate system. For low-level representations, though. model size and processing efficiency must be

considered. More significantly, the information content of such models is limited-there is no

mechanism for describing the explicit geometry needed for many kinds of spatial reasoning.

2.4 MODELING UNCERTAINTY

In the first place. sensor-based methods are. by nature, probabilistic-prior information about

the sensors, their media, and the conditions for research observation is always limited: that is. some

properties can be described only by statistical methods. In the second place, acoustic signal and noise

models are described by random processes or random fields [OI'shevskii, 1978]: optical propagation and

scattering in water are analogous [Durntley. 1963]. The inaccuracy of position !er,-rs. quantization

noise of a discrete processor, and algorithmic approximations add more uncertaint, to the model.

With developments in the fields of Al and Robotics has come a realization of the complexities of

the problems being addressed. This attitude has engendered a new look at the brittle, deterministic

techniques of the early years and a trend toward methods that explicitly represent uncertaintv. This

springs partly from the need to accnnt for lev than ideal zensors and acthintorq. ;11( 11,, .,

recognition of the limitations in our coarse techniques.

There is also a growing appreciation for the central role of "fuzzy" representation and processing

in a human brain evolved to contend with a highly dynamic and capricious environment. An inherent

characteristic of the information available t3 human beings is that it is imtpetfect in the sense of being

incomplete, uncertain, inconsistent, or otherwise not wholly suited to the judgmental task at hand
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al , .Sage, 1987]. Computational approaches to machine perception must surmount the same

obstacles.

A tcame\kork for Probability Theorv hi heen in existence for over three hundred years [Niuuer.

10871. though a rigorous formulation dates only to the beginning of this century. mainly based on the

works of R. A. Fisher. A. Kolmogoroff, and R. von Mises (Feller. 1950: Doob. 1953]. Recently.

though, many new theories have emerged that purport to overcome some limitations of classical

probabilistic methods in the context of machine intelligence [Stephanou and Sage. 1987]. Among the

objections raised against Probability as a tool for building intelligent systems are (Cheeseman, 1985:

,Nutter, 1987: Stephcviou und Sage. 1987]:

Probability is a frequency ratio. and each event has exactly one correct probability. For Al

purposes, such a probability is neither attainable nor, in some cases, even interesting.

The frequency theory restricts probability to those domains where repeated experiments are

possible.

The philosophical concept of long run frequency raises the questions: How long? How do you

know'? Why should large numbers (How large?) have special properties?

The subjectivist view is based on the belief of an ideal rational subject, but: What makes

someone an ideal rational subject? And how, other than by measured frequencies. can we

establish the degree to which a subject ought to believe that an event will occur?

Bayesian analysis requires vast amounts of data often unavailable or too expensive to obtain.

The normal way around this is to guess.

Prior probabilities assume more information than is given, and equate lack of evidence

(uncertainty) with equal probability (from factual statistics).

ClIeeseman [1985]. a strong supporter of Probability, contends that all these objections can be

o~ercome by a proper interpretation of the theory. and that no alternative framework is needed.

Stepnoi td S )o,. 1-71 conclude that all returns are not vet in and that a definitive taxonomv of the

different methodq. includina henefit- and costs. ik needed to ae, the i , 11 " 'I ',.

balanced view and finds a place for combined modes of reasoning about uncertainty. Henderpo,' ,t 0l

[19871 report a general agreement among participants in a multisensor workshop on tile ue ()I

probability models at the physics and geometry level, and that other methods may be more appropriate

at the symbolic level. This thesis offers no attempt to resolve the controversy but. for the sake of later

discussion, a brief o~erview of a few widely-used techniques follows.
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Confirmation Theory (Carnap, 1950: Salmon. 19731 arose from long-standing inquiries into the

nature of scientific induction-reasoning toward general principals from particular facts or instances.

Ho\,ever. no purely logical validation of inductive reasoning has ever been demonstrated. At most.

experimental results tend to confirm a theory and. in some cases, accumulated confirming evidence

may elevate a general hypothesis to the status of. at least, provisional acceptability [Salmon. 1973]. For

example, the law of conservation of energy is now taken to be a sound scientific generalization because

of much confirming evidence and no compelling disconfirmations. Yet. such was the case \,ith

Newton's gravitational theory before being superseded by Einsteinian relativity. Salnor [19661 makes

the point that induction is ampliative-that the whole (accepted general principle) is greater than sum of

its parts (accumulated evidence). Confirmation Theory seeks to overcome this logical limitation by an

incremental substantiation of an hypothesis with the accumulation of supporting evidence.

In the MYCIN system for evidential reasoning in medical diagnostics. Shortiffe [19761

heuristically develops the use of Certainty Factors (CF) as a direct outgrowth of Confirmation Theory.

A measure of belief (MB), ranging from 0 to 1, is used to incrementally accumulate confirming

evidence for a particular diagnosis: a measure of disbelief (MD) independently combines disconfirming

evidence. A modified Bayesian combining formula aggregates MB and MD. and evidence is combined
without regard to the order of acquisition. Then for each candidate diagnosis, a certainty factor is

defined as: CF = MB - MD. This is interpreted as a confidence in the diagnosis, which ranges from

-I (complete disbelief) to + I (complete belief). A CF of zero indicates complete uncertainty about the

diagnosis.

One component of the model prescribes a method for the parallel combination of certainty factors

that bear on the same hypothesis as:

x + y- Xy, X.y> 0{ (x + y)/(I - min[Ixj,jyl]), xy < 0
x + y + xy. xy< 0

where x and y represent the independent certainty factors, and z is the effective certainty factor.

Horvitz et al. [1986] point out that this combining rule is a specialization of probability because

assumptions of conditional independence are imposed by the methodology.

Zadeh [1965] develops a rigorous Possibility Theory based on fuzzy sets. In essence. Zadeh

extends the definition of sets to include continuous degrees of membership. and defines new set

operations for manipulating them. This "fuzzification" of mathematical structures then leads to the

concepts of fuzzy logic and inference. Unlike classical logic, fuzzy logic does not separate logic and

probability [Stephanou and Sage, 1987]. Fuzzy reasoning has been adopted by researchers in a wide
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range t 'iet~s [Games, 1976]. A chip for real-time reasoning with fuzzy logic has also been designed

and tabricated [ Fo'at and Whua~nabe, 1986].

In response to a need for representing imprecision in Bayesian probability values. Dempster

[11)t,7 1 introduced a concept of lower- and upper-probability bounds to contend with the subjective

imprecision of uncertainty measures. Shar'r [1976] extends this concept to a Tleof-v of Evideme. and

formulates a combining rule for cumulative evidence. In the Dempster-Shafer (D-S) approach, two

separate intervals of uncertaint-be hef and plausibilit.---can be assigned to each proposition. The D-S

Theory of Evidence models the narrowing of the hypothesis set with the accumulation of evidence.

ZAder [1986] describes a simplified view of the approach and proposes an extension that links the D-S

theory with a theory of fuzzy relational databases. Gordon and Shortliffe [1085] discuss advantages of

the D-S theory over Certainty Factors, and show that MYCIN could be recast in a D-S framework.

2.5 HISTORICAL PERSPECTIVE

With this background, I devote the rest of this chapter to an overview of past and current works

that relate to this dissertation. I start with a brief description of the most common techniques for image

reconstruction from projections. As I mentioned in the introduction, these methods are influential to

the approach I develop in the next chapter. Next. more general approaches to modeling by what I call

incremenial reconsiruction are presented. Though the techniques described in this section are distinct

from those preceding and from my own approach, the two sections together establish a context for

incremental reconstruction from projections.

A complete survey of modeling and navigation in terrestrial robotics would be prohibitively long.

but I discuss a few approaches and give references to alternative theories and implementations. In

doing so. I offer a basis for comparing my work with similar efforts in the field. Some of the main

components I point to are: the representational scheme and frame of reference, the dimensionalitv

(spatial or multisensor). the representation of uncertainty (or lack of it). and the high- or low-level

characterization of the approach. To conclude. I discuss a few treatments of the problem in

autonomous underwater vehicles, and briefly outline where my work fits in.

2.5.1 Reconstruction from Projections

In 1917. the Austrian mathematician J. Radon proved (the Radon transform) that a two- or three-

dimensional object can be reconstructed uniquely from the infinite set of all its projections [lhidier

antd Gai/ber,. 19741. Since that time, the technique has been independently rediscovered several times
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Figure 2.1: Parallel ray projection geometry.

[Gordon et at., 1975], and applied to such diverse fields as medical X-ray imaging, nuclear medicine,

electron microscopy, radio astronomy, and nondestructive testing (for readable tutorials, see Gordon ei

at., 1975: Scudder, 1978: more complete discussions and extensive references can be found in

Buldinlger and Gullberg, 1974, Clho, 1974: Gordonz and Herman, 1974; Brooks and di Cliiro. 1976:

Mueller et at., 1979). Mfunk and Wunsch (1979] showed that tomographic reconstruction could be used

to monitor the speed of sound (and, by inference, densit)) over large regions of the ocean.

Digital reconstruction techniques attempt to approximate an object sampled by discrete

projections. Most approaches n, odel a three-dimensional object by stacking two-dimensional slices.

However, Mersereau and Oppenlheim [1974] show th~at the techniques can be extended to the

reconstruction of multidimensional objects by successively applying the Projection Slice Theorem.

Figure 2. 1 shows the basic geometry of a one-dimensional projection that uses parallel-ray sampling

(X-ray, for example) of a two-dimensional slice.
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The projectioi gtx' ) ot an ideal image fx) in the direction E is given by: f f(x' .y' )dv' . where

x' = Rex (bold typeface is used for vector notation: x = x.y: and R. is a rotational transformation

matrix). With a source at position A and a detector at B. the first projection datum is acquired. The

line .4 is called a ,av and the measurement at 11 a ray sum. For an X-ray system. the ray sum is

related to the integral of absorption (corresponding to density) along the ray. Data for the entire

projection are obtained by moving the source and detector along AA' and B/'. sampling at fixed

intervals. The lines are rotated by a small angle. dO. and the process is repeated N times over an

angular range of 180 °. Reconstruction is an inverse problem stated as: given the projection data

gk(x'). k = 0 .... N-I. construct the original image f(x).

One possible solution is a simple matrix inversion or, if the inverse does not exist. a

pseudoinverse can be taken (Scudder. 1978]. However. Scudder estimates that for 300 projections of

300 rays. displayed at a 300 X 300 resolution. at I us/operation the inversion would take about 31

years to compute (or only 10 years or so on today's machines). Many more practical approaches to the

problem have been developed-Budinger and Gullberg [19741 present 13 distinct categories of

techniques. In general, though, these can be broadly classified as [Brooks and di Chiro. 1976]: (I)

Backprojection (Summation): (2) Analytical Reconstruction: and (3) Iterative Analytical Reconstruction

Techniques (ART).

Summation is the simplest method. Using a gridded image array, each ray sum. gk(x'), is

distributed over all cells along the corresponding ray. For M cells intersected by the ray. each cell is

incremented by gk(')/M. a step called backprojection. When all rays are backprojected and the

gridded array is normalized, the reconstructed image is an approximate version of the original. The

result of reconstructing a point object with a discrete number of projections is a star-shaped object

%hose center lies at the location of the original point. This is the point-spread function (or impulse

response) of a discrete backprojection.

Even with an infinite number of projections, the summaiion method does not produce an exact

version of the original. The result is equivalent to convolving the original with the function l,'(2tlr).

To see this. consider a point object. The limiting case of superimposing equally-spaced straight lines

through a common point is equivalent to rotating the line about that point. The weight of each point on

the line is distributed over the length of the locus it sweeps out. in other wordq. the circumteience.

2rtr. Gordon and Herman [1974] point out that a truly three-dimensional reconstruction by summation

(over all spatial angles) would have an impulse response proportional to I/r 2 . Blurring is lessened

considerably because of the increased data.

The most common analytical techniques make use of the frequency domain. The Projection Slice

Theorem [Meir-erau and Oppenheim. 19741 shows that the Fourier transform of a projection is
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equialent to a central section of the transform of the original image rotated through the same angle as

the projection in the spatial domain. In practice, the projections are transformed and assembled in a

frequency grid. and an attempt is made to interpolate between the discrete slices. After interpolation.

an inverse Fourier transform produces a reconstructed image with greater fidelity than a backprojected

approximation. The Convolution-Backprojection technique partially ameliorates artifacts introduced by

the Summation method. Though based on the frequency-space derivation of a convolution kernel, the

method is applied in the spatial domain. The kernel (in two-dimensional space, an approximation to

the Fourier inverse of Irl) is convolved with each projection, then the modified ray sums are

backprojected.

ART [Herinwi et a!.. 1973] and other iterative techniques are applied to the solution of an

undetermined system of linear equations in the spatial domain. The algorithm consists of iterati'elv

correcting the discrepancy between the measured ray sum and a calculated ray sum from the image

generated by the previous iteration. Variations using additive and multiplicative corrections exist.

Important modifications that take advantage of working in the spatial domain use the constraints that no

image cells can have negative values, and all cells along a ray whose sum is zero must also be zero.

Other versions of the technique use a Bayesian approach to incorporate prior knowledge of the object

being reconstructed [Hanson. 19871.

Das and Boerner [1978] develop a novel approach to shape estimation of cc vex bodies using

radar returns from multiple, nonorthogonal look angles (in a plane). Based on an application of the

Radon transform, the authors use target signatures (normalized backscatter ramp response) to extract

successive area projections. Numerical studies with published target signatures of a sphere (and

assumed perfect registration) showed promising results. Rockmore et al. [19791 point out limitations of

the approach and describe a method developed from a three-dimensional version of the Projection Slice

Theorem (attributed to Mersereau and Oppenheimn [1974]). The authors derive a convolution-

backprojection algorithm and contend that the Das-Boerner method is a special case.

Denton et al. [1978] describe an approach to the target-association problem-identifying multiple

targets viewed by multiple sensors-as an image reconstruction problem. A convolution-backprojection

method (a precursor to that of Rockmore et al. [1979)) is developed for a three-dimensional case of

active radar and a two-dimensional case of paive infrared At a given target rance. the n,"thor- 'i e a

finite plane, bounded by the sensor's beam pattern, as a simplifying approximatioi to the cur~ed.

shaded range surface. Monte Carlo simulations show the star-shaped impulse response calsed bv

sparse projections, but otherwise demonstrate results that the authors claim are equal to or better than

search-based algorithms. They indicate that, although fast performance was not a research issue. the

technique appears to be implementable in real time.
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ro, m PQ I I etends these ideas to the ocean domai n and proposes the use of ni o litle.

xi ss e na r u.a,113 for sim\eillance. target localization, and mapping the acoustic space-time noise

tield lie suggests that the (-teadv-state) signal received from an%. direction could he modeled as a ray

'urn. a11d that raxNs tmm multiple look directions with one array would constitute a projection v, ith lan-

"ai, :conticr\. From multiple arrays. multiple projections would provide the data for reconstructing

the acoustic emission field. In justifying his proposal. Rockmore writes:

The more conentional method for performing this type of surveillance is to
perform the frequency processing and thresholding on a per-array basis, and then
combine the threshold exceedances geometrically. This procedure of thresholding
ber're all signal processing is performed is in violation of sound engineering practices.
Thus the performance of this technique will be generally inferior to that of
tomographically combining prior to decision making.

Rockmore goes on to discuss such problems needing resolution as: beam-pattern effects-the rays are

no longer lines: multiple look angles to "deconvolve" the beam pattern: sparse projections: and noise.

.Vorroz and Lnrzcr [1979a. b] discuss reflectivity tomography for ultrasonic medical imaging with

circular and spherical arrays of omnidirectional transducers, and present a comprehensie theoretical

analsis that leads to a convolution-backprojection approach to reconstruction. The authors major

assumptions are: (I) weak scattering (Born approximation): (2) uniform attenuation from absorption

(which can be compensated): (3) uniform sound velocity: and (4) the object can be modeled as a

collection of isotropic scatterers. A first-order expansion (shown to be valid near the center of the

transducer array) is equivalent to the local intersection of linear projections in the circular case. or

planar projections for the spherical array. Aside from the normal monostatic (backscattering)

geometry, the authors offer a theoretical treatment of the bistatic case (over a limited range of scattering

angles) in which the projection integrals are taken over elliptical range arcs.

2.5.2 Incremental Reconstruction

A limitation of the techniques just described is that they need a fixed, regular scanning geometry

for analytical and computational tractability (an exception is the summation method). Hoot [IQ791

describes a method for arbitrary scanning geometries. bt requires that they be fixed so a convolution

kernel can be derixed for each geometry. However. a mobile robot cannot alxsavs adopt a regular

sensing strategy. but must take an opportunistic approach to whatever information becomes available.

Ihis alternatike I call increonta/ ,cons/uciOllt and I describe a few three-dimensional techniques.

Other. more complete robotic applications using this approach are discussed in the next ;ection

Further reterences and discussion of modeling with range data can be found in Jaris. I1983] and /c'l

c ., Ia/ . [1 85].
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ta:!'m and .vv anai [1983] deelop an algorithm for volumetric modeling from successive two-

dimensional boundary constraints. Occluding coarours (the boundary on an object silhouette in the

image plane) from thresholded camera images are used to refine a voihone-se.'memr representation

comprising linked segments. lines, and planes. Connot/v [1984] uses simulated range-image

boundaries to incre tientall, construct an octree representation of three-dimensional obiects. The

gridded range image is converted to an intermediate quadtree representation, which is projected into the

octree model. Later work [Connollv. 1985] develops a strategy for finding the most efficient sequence

of views for model building. Veenstra wd Altuja [1985] project the silhouettes directly into an octree.

but require nine views (corresponding to six faces of a cube and oblique views at three corners) fcr

efficiency. All these approaches assume perfectly registered data and no uncertainty.

A long-term project at the National Bureau of Standards has produced a sophisticated modeling

approach to managing a manipulator's workspace for manufacturing robotics [Sheier el at.. 1984.

198W. Hong and Yiicier, 1985]. Object silhouettes from a moving camera are projected into an octree

structure as generalized cones. The intersections of cones from multiple views successively constrain

the object boundaries and implicitly represent uncertainty in size and position of each objtct. This

technique is only one component of a high-level world modeling system from which information also

flows "downward" to help resolve ambiguities.

Faugeras [1984] uses a high-level approach to modeling three-dimensional objects with range

data. Planar and quadric patches are fitted to segmented clusters of range points and accumulated in a

region adjacency graph. This contains information about points in a region, borders, and neighboring

regions. Hypothesis prediction and verification, implemented in a tree search, is used for matching

and localization of objects. A probabilistic formulation [Faugeras. 1987] uses planar primitives and

motion from passive stereo vision to combine information from several viewpoints. -4mblard et al.

[1986] propose a technique for three-dimensional surface estimation from multiple stereo-camera views.

The surface is modeled as planar triangles related by Markov Random Fields.

2.5.3 Terrestrial Robotics

At Stanford Research In-titute in the late sixties. the mobile robot SHAKEY [Rnveii aid \'ifv-oi.

1968: Nilsson. 1969: Coles et al., 1969: Rosen. 1970) became an early tesillf loi icsc:ni h iii

autonomous intelligent vehicles. The high-level world model uses a gridded spatial structure. which

later e~olved into the quadtree representation (Rosen notes, however, that a fully dikided array is more

suited to such applications as path planning). The gridded model is augmented by an object-oriented

propery lot. qimplistically, the LISP equivalent of multidiniensional feature space. Machine vision and

- 37 -



dead reckoning ga'c SHAKEY a rudimentary ability to navigate, explore, and "learn" ,,bout its

e\ ironnient.

Begun in 1O77 t tle FI'ench Laboratoire d'Automatique et d'Analvse des Svstemes. research

%%ith HIL.,RE resulted in one of the most complete and consistent mobile robot implementations to date

[;;ra".' ci al. 197Q. 1983: Briot ef al.. 1981: Chatila and Laumoid, 19851. Using multiple sensors

incl.-ding \.ideo. laser, sonar, and infrared, the robot maintains an uncertain. dynamic %%orld model.

Descriptions of polyhedral objects. each with its own reference frame, are maintained in a geometry

database. These are projected on a plane, and the polygons linked to form a graph of placcs. The

authors introduce the idea of Jbding to propagate accumulated positioning error backwards through the

topological representation. A semantic model maintains property information about objects and places

so that distributed decision makers, in the form of expert processes, can access the model database for

navigation. planning. and task supervision.

From the early seventies at Stanford University's Artificial Intelligence Laboratory to the present

at the Carnegie-Mellon University (CMU) Robotics Institute. Moravec [1980. 19831 has evolved many

elegant modeling approaches for mobile robots. Using stereo and. more recently. sonar to correct

dead-reckoning errors, a unique. low-level approach incorporates the powerful notion of mapping

probabilistic sensor distributions into model space [Moraiec and Elfes. 1985: El/i's, 1986a. bl.

Certainrv Factors and a modified MYCIN combining formula [Shortliffe. 1976] are ,3ed to

incrementally merge thresholded sonar returns into a stochastic. two-dimensional gridded

representation. Correlation techniques are applied to compare the grid with a prior model for

localization. What have come to be called Certaintry Grids [Moravec, 1987a. b] have been successfully

implemented by the CMU group for map making, path planning. and navigation [Thorpe. 1984: Serev

and Mathis, 1986].

In a parallel effort at the CMU Robotics Institute. Crowlev [1985a. b] used a rotating ultrasonic

sensor to build a two-dimensional composite local model of the world. Line segments are extracted

from sonar readings. adjusted with a recursive line-fitting technique. and used to update the dynamic

mode: A side effect of matching line segments is an eiror vector representing a position correction.

Drumheller [19851 uses a similar model of line segments but applies a search-based technique [Grihs(1'

(I'd lIr1110-l'OrC7. lQR1J for matchinz ,evnient,. Priniheller repnrts gond rerltt dfefpite nnke and

error from specular reflection, multipath, and the wide beam pattern.

Miller 11984. 19851 develops a technique for navigation and path planning in a txo-dimensional

space Using a ,wide-angle sonar aboard a mobile robot. Miller applies search techniques and heuristic

pruning to match range returns with linear features (lines. edges) of a prior model Miller reports

good performance v.ith nois'\ real-world data. and enough speed to accommodate sonar data rate,.
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More recently. Mil//er and Slack (1987] develop a theory of message passing among nodes in a linked

hierarchical grid for navigating in a dynamic two-dimensional space. Bi.vler and Miller [1987] propose

a technique that combines vision and sonar to extract linear features for updating a wire-frame grid map

of the world.

Flynn [1985] describes an application of mapping and path plantng v.'h data from sonar and

infrared sensors. Using physical models of the sensors, Flynn incrementally combines real data to

overcome the limitations of each sensing modality. Near edges (doorways). the better angular

resolution of the infrared sensors (poor range resolution. though) alleviates the blurring introduced by

the wide-angle sonar. From the refined map, an intermediate curvature primal sketch is extracted. In

turn. this is converted to a two-dimensional polygonal representation for path planning.

Brooks [1985a. b. 1986] develops a philosophy that rejects the brittle approaches of earlier work

and focuses on the realities a robot must face in a complex, dynamic environment, and on the tools to

make such "artificial beings" practical. According to Brooks: errors and inaccuracies in sensors and

actuators must be considered: real robots must be adapt3ble and tolerant of sensor failure: multiple

sensors and different levels of resolution are needed: and three-dimensional representations are essential

in a three-dimensional world. Brooks also argues strongly against the use of absolute coordinate

systems because of cumulative errors, He contends that a relative framework is more useful, and that

the design space for perception systems must reflect this.

Rao et al. [1986] address the problem of autonomous robot navigation in unexplored terrain.
They develop a theory of concurrent navigation and learning of the environment, and discuss

performance considerations. Their two-dimensional representational scheme uses a modifited adjacecv

list. a graph structure linking labeled polygons, with no mechanism for representing uncertainty.

Marce and Julliere [1986] discuss an alternative method for navigating in two dimensions that depends

on prior knowledge in a gridded world map. Simulations of a laser rangefinder demonstrate position

and heading determination using a point-matching technique.

Kuipers and Byun [1987] describe a qualitative approach to learning a topological map of

distinctive places in a two-dimensional environment. The authors simulate a mobile robot bv

hvplothesifinR a sensor system and sufficientlv distinct environmental features to overcome noie and

error, but otter no real-world results or quantitatike simulation ol uncertainty. Levini cat. [I 9871

develop a theory of Long Term Memory for a mobile robot, which represents visual landmarks in a

distributed topological framework. The authors describe a simulation laboratory and results that

suggest the utility of the techniques.
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Dean [19871 de elops an approach that combines elements of a subsumption architecture [Brooks.

1l485b] and certainty grids [Moravec. 1987a. b]. and points to a forthcoming implementation. Strat and

Smith [1987] describe the Core Kntowlede System. an architecture combining elements of relational and

spatial databases with uncertain reasoning, as a basis for a forthcoming application with an autonomous

robot.

'r-dis .... , t/a.anis [19871 propose the use of entropy as a common ,'easure of uncer!:!in.!- for

organization, coordination, and execution in autonomous systems. Farreny and Prade [1987] describe

the use of fuzzy techniques to contend with robotic uncertainty in action, perception, communication.

and reasoning. Smith et al. [1987] use state-estimation methods to propagate error in a distributed

coordinate system. Durrant-White [1988] develops a rigorous stochastic topology and describes the

consistent transformation of uncertainty between relative coordinates at different nodes.

In reviewing these works chronologically, two trends seem clear: the use of multiple sensors. and

the adoption of probabilistic methods. I think this reflects the heightened awareness among robotics

researchers that there are no simple, all-encompassing techniques to circumvent the realities of a

complex. uncertain environment. On other accounts, the kinds of representations. reference frames.

and levels of approach reflect the research tracks of different investigators and the varied constraints

and opportunities of different applications. On the one hand, this is a natural state of affairs for an

immature field in which the methods have not yet converged toward preferred theories or

implementations. On the other hand, it is unlikely there will ever be one optimal representational or

processing paradigm. What this thesis strives or is a generality, consistency, and flexibility that is

useful over a range of applications and sensory domains.

2.5.4 Underwater Robotics

Though the history of autonomous underwater vehicles extends back at least two decades [Busby.

1981: Bane and Ferguson. 1987]. these first AUV's were no more than preprogrammned. free-swimming

idiots. With new technology and rising military interest, though, more sophisticated AUV's have

begun to appear. However, many approaches are taken directly from terrestrial methods. which may

not he the moqt ruited to the undersea domain. Mo-t description- in the literatre fncii on power.

communications, and other hardware issues. but I discuss a le% ol the mote recent appi oai lie Itia!

include information on modeling and representations. Broader overviews and more detniled

presentations on missions and technology are given in (Krabach. 1983: litonas. 1983: Ilwtg. 1983:

Eppig. 1985: Stenovic. 1986: Bane and Ferguson. 1987].
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One of the first "intelligent" ..\UV's was the EAVE vehicle of the Universitv of New Hampshire

Nlarirne Sstens Laboratory [Blhldber- e al.. 1978: Ilidber.q. 1984. 198t: Chappell. 19)87]. The v-tei

ha,; e nked considerablv in the last decade and a ne. effort xAith the National Bureau of Standardq ' ilI

turther enhance its capabilities [.-lbus and llidberie. 1987]. The NBS plans to implement a high-lexel

\orld model, which ,.%ill include quadtree maps from prior surveys. Orser and Roche -11997] deqcribe a

technique tbr extracting topographic features (ridges. nasses. ravines) front such prior maps. In a later

implementation. information from multiple sensors will be used to add objects to the global model or

remoe them if perceived to exist no longer. Recognized objects also may have associated confidence

factors, and degrees of believability and dimensional certainty.

The ANGUS vehicle is an early testbed that helped shape a sophisticated AUV program a!

Herriot-Wat University [Russell et al.. 1983]. Russell and Lane [1985. 1986] describe a knowledge-

based svstem with a blackboard control structure for sector-scan sonar interpretation. The systeni uses

the planar-bottom assumption to generate a two-dimensional sonar image taken from a stationary

pilttorm. Rule-based knowledge sources direct the application of image-processing operator, to the

data before interpretation. Higher-level routines evaluate such features as shadows and artifacts caused

by -idelobes. multipath. and reverberation. Segmented features are tracked between images betore

being accepted as bona ide objects. correlated with a prior model, then labeled with size. p1,oition.

orientation, and other symbolic information. The authors describe simulation results with real sonar

data. an i emphasize the utility of multiple representations (one-. two-, and three-dimensional) and the

interaction of model- and data-driven processes.

C,4s5it.'' and lHebert [1988] describe a simple shape-from-shading technique [Ballard and lrowi.

1982] using sidescan sonar. Each slant-range-corrected sonar line is segmented into shadows.

Shadows preceded b, a high-intensity signal are assumed to indicate positive relief: shadows follo'Aed

by high-intensitx ale taken to indicate trenches or gullies. The shadow length is used as a measure of

change in relief to generate contours. These are smoothed and merged with neighboring lines using a

least-squares technique. The result is an estimated bathymetric map of the imaged area. This map is

passed to an image-processing routine that extracts linear hills, valleys, and ridges in a manner similar

to that of Orser and Roche [1987]. Other researchers aJdressing sidescan applications tor A', are

Glvnu [ 19851. and Nichols and Jensen [ 1985].

Cltcwd and Noon [1986] describe the proposed sensory subsystem for obl:acle a\oidmie a) 1

navigation of the Martin Marietta AUV. The vehicle will incorporate a scanning laser and qonar 'irray,.

with navigation supplied by an acoustic transponder net underwater and Loran-C or Omega on the

surface. Zonal spots from multiple range sensors will be tracked with a Kalrnan filter. clurtered. and

compared with a stored pattern to infer distinct objects. The extracted objects will then he referred to a

high-lexel modeler that maintains a description of the environment.
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7,imbi'e [1)87] tocuses on the multiprocessor architecture of the Lockheed AU'V. hut offers a

,riet description of its serlsorY capabilities. A Sce'e Awareness function %kill interface with a Vhwnt

'!fa 'Mc to prokide high-level sensor management and process scheduling. This ,Aill include

mu!:;scansr correlation and know, ledge-based algorithms that deal with incomplete intormation.

\coustic and optical intormation .ill be interpreted in real time using signal processing and symbolic

processing. deterministic and probabilistic. The svstem is intended to judge the quality and correctness

ot mtorlnatlon. and may support some form of geophysical navigation. Other high-level goals include

stationar%-object location arid identification.

Other ongoing AUV efforts include: the EAVE-WEST vehicle of the Naval Ocean Systems

Center (San Diego) [Heckman. 1980: Durham et al.. 1987]: the EPAULARD vehicle of the French

IFREMER [Borot ei al.. 1983: Jarrv and Michel. 1985: Michel. 1987]: the ARCS and DOLPHIN

vehicles of International Submarine Engineering [Ferguson and Jackson. 1983: Jackson. 1983: 7tiomas.

1985: Butler wd Mar'ka. 1987], the SIMRAD Freeswimming Prototype [Kiepaker et al.. 1986, 19881:

and several Japanese efforts [Collins, 1987].

Judging by the recent literature, it seems clear that AUV research is beginning to address issue5

more germane to intelligent systems, in parallel with the ongoing efforts to resolve more basic hardware

difficulties. Mv perspective, though, is that much of the work too closely mirrors the approaches of
terrestrial robotics. Granted. there is much to be learned from the accumulation of terrestrial robotics

research, particularly at the higher. more cognitive levels. However, the more hostile undersea

environment presents a greater challenge to intelligent systems in several ways: it is a fullv three-

dimensional ,orld in all respects: environmental features are more unstructured, or amorphous: and
there is more inherent uncertainty in sensing, interpretation, and localization. I elaborate on these and

other constraints in thc next chapter. and use them to guide the formulation of a low-level approach to

modeling underwater.
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Chapter 3

MODELING THE UNDERWATER ENVIRONMENT

In this chapter, I start to formulate a philosophy of multisensor modeling underwater and

describe a specific framework for implementation. My primary concern is to establish a computational

architecture broad enough and flexible enough to encompass a diverse range of applications. At the

same time. the structure and processing must efficiently manage realistic data rates and imperfect

information. Later chapters show the utility of the approach with results from computer simulations

and applications with real-world data.

Using the context established in the previous chapter, I first summarize the modeling constraints

specific to an underwater environment. These are used to define a representational scheme and low-

level modeling processes. Computational and architectural issues are examined and used to help define

the general analytical approach. The framework is applied to active sonar sensing and model building

in the acoustic domain, using both binary and continuous models. I conclude with a summary of

important points raised in the chapter.

3.1 SPECIFIC UNDERWATER CONSTRAINTS

As surveyed in Chapter 2. the rich body of literature on terrestrial robotics has been stronglv

influential in shaping a modeling paradiem for intelligent. artonomouio miehineq. Ho,-e~er. in

extending these ideas to the subsea domain and to the practical requirements of remote under"ater

systems. the following considerations are noted:
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The land ro~er's environment is usually modeled as a two-dimensional plane allowing one

rotation. For a free-swimming vehicle, the world is unarguably a three-dimensional space-six

degrees of freedom must be accommodated.

Typically. there is a prior world description used by the robot to find its relative position. For

an exploratory probe, though, such models will be largely unavailable. A more general

approach must treat mapping and positioning as concurrent processes.

Most work has been confined to highly-structured environments (laboratories) with regular

geometric features (smooth walls, straight edges). A practical technique for underwater use

must be consistent with the more irregular, amorphous features of the environment as well as

the more tractable shapes of man-made objects.

There is more uncertainty in the relatively opaque and hostile underwater environment. Both

acoustic and optical sensors are hampered by greater attenuation, distortion, and noise

introduced by an inhomogeneous, dynamic medium. Currents, turbulence, and other physical

disturbances preclude the assumption of a static position and attitude, even when propulsion is

inactive.

Real-time constraints are often absent. Frame rates of stereo-image processing systems, for

example, are often measured in seconds, even minutes. A practical underwater system must

absorb sensory data at practical rates so that higher-level processes can respond in a timely

manner.

3.2 REPRESENTATIONAL DESIGN

As indicated in the last chapter, a fundamental component of modeling is the representational

scheme. The overall approach taken in this thesis is decidedly low-level, as defined in Section 2.3.2.

There are several reasons for this: (I) an emphasis on sensors and physical processes: (2) development

of a foundation for higher-level processing- and (3) opportunities offered by new computer technology.

First. some interpretation of sensor data litler take place at the phy'ical level in any reliktic

implementation. Considering an active device such as a sonar or a laser, for example. the information

content of raw sensor data depends on the low-level characteristics of the serror. on the phvsical nattre

of energy propagation through the medium. and on the interaction of that energy with environmental

features. Passive sensors are essentially no different. At the geometric level of interest, we are

concerned primarily with shapes, boundaries. discontinuities. and so on. Though higher-level

knoAledge might be useful in guiding this interpretation. it is often unavailable.
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Second, a firm low-level foundation can facilitate the construction of high-level models. The

human visual system incorporates early processing of raw optical data before passing the enhanced

information to cognitive regions of the brain. For a machine "intelligence" also, such preprocessing

can filter raw sensor data and distill its essence so high-level processes may avoid an information

overload. Still. a purely low-level approach is an inadequate solution to the problems a fully

autonomous system must address-planning and reasoning about the world, for example. My intent

has been to investigate the properties of such a low-level structure as the basis for future elaboration at

higher levels.

Third, there are many unexplored avenues for research at this level. Most AI/Robotics work has

managed information at the feature level or higher, partly because of the constraints imposed by

previous generations of computer hardware. With the advent of cheap 32-bit computing-machines

with extended address space and fast, inexpensive memory devices to match-numerical approaches to

modeling become an attractive possibility. In discussing his choice of a low-level representation.

Moravec [1987b] writes:

Despite its effectiveness, in each in-tnrce we adopted the grid representation of
space reluctantly. This may reflect habits from a recent time when analytic approaches
were more feasible and seemed more eloquent because computer memories were too
small to easily handle numerical arrays of a few thousand to a million cells. I think
the reluctance is no longer appropriate. The straightforwardness. generality and
uniformity of the grid representation has proven itself in finite element approaches to
problems in physics, in raster based approaches to computer graphics. and has the
same promise in robotic spatial representations.

Representational Primitive

To make an intelligent choice among the different primitives for three-dimensional modeling

requires some elaboration of the physical and computational analog. In a broad sense. this includes the

features of an underwater environment, the stochastic nature of modeling, and the characteristics of a

digital-processing approach. Such constraints must be considered in the context of the goals to- be

achieved.

Environment: For navigating an underwater vehicle in three-dimenmional space. the simplest

model must describe the presence or absence of solid matter in enough detail to, diktiimi,- mwp

different features of the terrain. In contrast to the structured environment often presented t() a land

rover, underwater seascapes are usually characterized by irregular. amorphous features. This

constraint tends to preclude the use of procedural schema since a prohibitively large repertoire of

primitives would be needed to describe the environment directly. The problem might be circumvented

by using many small-scale instances to approximate natural terrain: but with increasing detail. the
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model approaches a cellular partitioning. Similar arguments apply to faceted representations. which

need many polygons to model complex surfaces.

Uncertainty: Faceted descriptions and boundary representations. in general. offer no direct

method for representing uncertainty. When accommodated, error and inaccuracy are often specified as

a covariance matrix associated with coordinate transformations of the vertices or control points.

However, a characterization of sensor uncertainty by error distributions suggests a functional model

could be applied to the geometry as well. It is unlikely, though, that one function describing an

expectedly complex model could be found. A set of vector functions might be formulated to describe

the different features and associated uncertainty; each could be valid over a bounded range within the

model, similar to a faceted representation. However, the level of complexity grows with the level of

detail required.

Process: Real-time performance in a practical implementation puts a premium on computational

efficiency, which is strongly dependent on the underlying digital representation. The dynamics of the

process-the model evolves as new information is incorporated-raises questions about the efficiency of

a functional representation. even at a low level of detail. To merge new information with a model.

each descriptive function in the affected volume of space would have to be reparameterized.

Preservation of continuity dictates reconsideration of neighboring functions and. perhaps. a new

partitioning of functional domains. Potentially, this is a highly expensive computational process.

Though the most effective models are likely to be application specific. an extendibility to other

domains or dimensions is useful. For example. the 3-space decomposition used by a bathymetric sonar

modeler should also be accessible to a two-dimensional intensity mapper processing sidescan records.

A higher-level interpreter could use the slope and amplitude information to estimate localized scattering

properties of the surface material. A decomposition by frequency space might be more suitable for

multispectral fingerprinting with different sonars or other sensors.

Some functionality over a dynamic scale of range and resolution would enhance the assimilation

of sensory data with different granularities. Interpretive and display processes could adopt a coarse-to-

fine algorithm or a strategy that trades fidelity for real-time execution. Degraded performance from

higher tincertaintv. coarser resolution. or reduced computational assets chouid nccur in a generillv

monotonic a% '"ith no catastrophic thiesholdq to Ic ciossed.

These considerations argue in favor of a cellular model (or. more generally, a vector

decomposition of n-space). Coherence is satisfied. it is continuous in space and time. and mirrors the

physical structure of the environment as well as the internal structure of a discrete. computer-based

system. It is amenable to simulation in the computational sense because it offers an efficient

- 46 -



representation for mapping, positioning, and imaging procedures. And the implicit spatial relationships

among a model's constituent voxels afford a level of simplicity and efficiency difficult to achieve with

other representations.

Coordinate System

The choice of reference frame is a thornier problem; the tradeoffs between relative and absolute

coordinates are not easily resolved for a single, general approach. Brooks's [1986] argument against

absolute coordinates-that cumulative positioning error corrupts the spatial relationships in such a

frame of reference-is a persuasive contention. However, the same error will be present in any model

derived under the same conditions, unless it can be removed by external (absolute) position fixes. The

real issues are: how efficiently does the representation lend itself to coping with that error, and how

can the model be adjusted when a fix becomes available?

Our own internal model probably uses a combination of the two reference frames. Certainly we

have some sense of absolute position, and it is most evident when we perceive visually. Yet. with our

eyes closed, the richness of description fades quickly and we are left with the coarse, underlying

representation that probably guides our more basic cognitive processes [Marr. 1982]. At this level, the

surroundings are remembered more generally as distinct objects with sparse features and more generic

shape. and with "fuzzier" measures of spatial relationships attached-the "tall" cabinet "across" the

room is "next to" the door.

For a high-level machine model in which the environment has been characterized by such

objects. this topological approach is manageable, perhaps preferred. However. for the low-level

approach developed in this thesis, a global coordinate system is used. except for a few instances in

which a local (or view-centered) frame is adopted for analytical convenience at intermediate steps. My

reasons for doing so are: (1) efficiency and consistency: (2) response to constraints imposed by

unstructured terrain: (3) consideration of requirements for real-world applications.

I have already emphasized the need for computational efficiency and the advantages of a low-level

structure that implicitly represents spatial organization: this is consistent with the cellular structure

selected for a modeling architecture. That choice. in turn, is driven partly by a need to deal with the

amorphous shapes of natural underwater terrain. Such an environment is ill -uciid Io 11l1, --. t

based methods. Distinctive measures of shape are more difficult to formulate and apply. and the

boundaries between natural features are not clearly defined.

My main concern, though. is to address the requirements of real-world AUV's. For a robot

whose only purpose is to wander the hallways without getting in trouble, it may suffice to know only

that a feature is "large" or that it is "next to" another (such concepts are more important to semantic

- 47 -



reasoning). But many practical applications----exploration, mapping, survey, inspection-depend on an

absolute frame of reference. Other missions require an AUV to reach a specific objective, perhaps

after an extended traversal, and return to its starting place. Such systems are intended to serve a

human user who demands more continuous, quantitative information about size. shape. and location in

the real world.

3.3 ARCHITECTURAL OVERVIEW

So far. I have established that the models with which this thesis is concerned: (1) are analogic:

(2) are low-level: (3) use a volumetric primitive (two-dimensional variations using an area element are

also considered): and (4) use an absolute frame of reference. I have justified these choices mainly in

terms of the modeling applications-intelligent systems, the underwater environment, real-time

constraints, and so on. In later chapters I offer further substantiation in the context of particular

applications: but for now. I leave these issues and discuss the two remaining representational

components important to this work: feature vectors and spatial indexing.

Unlike the first four components just mentioned, which provide a constant and consistent

framework for all that follows, the last two depend on the modeling application, and even vary with the

different processing components of the same application. For that reason. I maintain a generality in

this section, the last devoted mostly to representational issues. I start with a description of a model as a

set of feature vectors that represent the environmental parameters of interest, then briefly discuss spatial

relationships and spatial indexing. Next. the flow of information from measurements to models is

considered, and the processing steps are formulated as a sequence of transformations in which vectors

are mapped from one representation to the next. In this section. I also develop a general notation used

for the rest of the thesis. With this as background, the rest of the chapter begins to focus on

processing-the other half of the representation/processing duality-and I offer more concrete

examples of modeling specific sensors.

3.3.1 Vector Modeling

A global model of an underwater region can be formed by dividing it first into regular cubical

volume elements, or voxels. If the division is fine enough. then one value can be given to any property

that we want to consider within each voxel. For example. to represent the distribution of acoustic

scattering strength over an underwater terrain. I use the feature vector:

P = ,t'XY.z.Pal
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,.here t is time: x. y, and z locate the voxel in 3-space: p is an estimate of how much sound energy

,.ill be reflected back to a sonar receiver: and ap expresses our confidence in that estimate.

The curly braces imply that you can also consider each vector as a set of features associated with

e:ach ,mall volume element: then, a model, or model vector, comprises a set of such feature vectors, for

example:

Mo

where: x = {x.yz}

a = a,.ax}

and X is an optical reflectance parameter, perhaps derived from a scanning laser. A representation of

higher dimension might include camera images, temperature, salinity, magnetic field, and so on. As

above. I use bold typeface as a vector shorthand, and the bold, upper-case M denotes a global model.

By global model. I mean the set of all feature vectors over the region being modeled: a local inodel is

just some subset. It is consistent to consider a feature vector that describes a single voxel as a local

model: however. I use the term to designate larger subsets for specific purposes.

If we bound the region to be modeled and consider a fixed voxel size. then the model constitutes

a finite set. Also, I consider only digital representation and processing in this thesis (discrete notation

is used only occasionally for clarity). and that each feature has a finite resolution and range of possible

values. With these conditions, the size of the model is deterministic-the computer storage needed has

an upper bound determined by the range, resolution, and number of different features. These

conditions are not required absolutely in any of the development that follows, but the property of

determinism is useful because computational resource requirements can be forecast. I elaborate on this

point in later sections.

In the model vector above, I make all information explicit by including the spatial coordinates of

each voxel. For some types of processing, this is a convenient representation. For example. a point

process, which requires no information about neighboring voxels, could operate on a list of feature

vectors. Simple threhOnlding is such a process: the value of a feature at some point is compared with a

threshold value that does not depend on any other point. Con' olution is a regloikal /po'55: pJfiui \;jues

are multiplied by coefficients that depend on spatial (temporal) relationships within a region.

For such operations it is usually more efficient to arrange the values in a spatially organized

structure such as an array. Though convolution can operate on a list. repetitious traversals of the list

to identify neighboring voxels would be computationally burdensome. However, a three-dimensional

array is not the only choice to represent a three-dimensional model. As mentioned in Section 2.3.3. an
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Synchronous Asynchronous

Figure 3.1: Information flow for open-loop modeling.

array only provides a technique for spatially indexing the values associated with each voxel. The spatial

relalionships are Implicit In the cellular decomposition; the spatial index may be Implicit In an array (by

virtue of spatial relationships among memory locations), or explicitly represented in a list of vectors.

For the computer implementations to be described in later chapters I maintain the global model

as a three-dimensional array of vectors. The choice is made for convenience and simplicity in

programming development, but other indexing schemes are also applicable; the tradeoff is usually

efficiency against storage (I briefly mention the use of octrees in Chapter 7). For local models and

other intermediate representations, I use 2-D arrays, 3-D arrays, 2- and 3-D arrays of vectors, and

vector lists of different kinds. In each instance, the choice is one of convenience or efficiency.

Regardless of the underlying computer implementation, I use the explicit notation described above as a

reminder of the representational flexibility.

3.3.2 Open-Loop Modeling

In the 1,it chapter I mentioned the closed-loop nature of concurrent modeling and pnoitioning.

For the rest of this chapter, though, I consider the more straightforward problem of building a model

when position measurements are available. The information flow in a general. open-loop modeling

process is depicted in Figure 3.1. The flow starts with a stream of measurements, which are filtered

by a state estimator before being passed to an event processor.
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I define a sensor event as a spatially or temporally contiguous set of measurements (or state

esti flates). Considering a pulsed sonar, for example, an event starts with an outgoing pulse and

comprises the interval ending %,ith the start of the next pulse. During that interval, the signal passes

through a region of space and may be scattered or reflected back to the receiver by one or more

targets. The boundaries of that region are mainly determined by the sonar's beam pattern and effective

range. and only within that space can we detect any features of interest. A pulsed-laser event is defined

analogously, and the detection etvelope. which bounds the region in which information may be derived

from that event, encompasses an almost linear segment of space. The detection envelope of a

temperature probe approaches a point, and an event comprises a single digitized sample.

I elaborate on events and detection envelopes in Section 3.4 and describe how events are

backprojected into the model in Section 3.5; but, for now, it is sufficient to picture a stream of

measurements and events from which a model is built. For an open-loop system, in which the sensors

are not under high-lexel control, there is usually a high-bandwidth. sYnchronous stream of data that

must be processed and incorporated into the model (or ignored). However. the processes that draw on

the model as a source of information-a display processor or path planner, for example-are drixen hv

needs unrela:cd to the relentless flow of sensor data.

Functionally, the model can be cast as an intermediate representation that decouples high-

bandwidth, real-time sensors from the more asYnchronous processes that consume information. We

want an "expert" sonar process, driven by the hardware-determined data flow, to be able to build its

model independent of a display expert. say, that serves a human operator's changing information needs.

Rather than ignore the data if they are not considered immediately useful, they should be merged with

the model whenever available: the information may turn out to be useful in retrospect.

Our human sensory processes work similarly: often, we recall something seen or heard that

seemed unimportant when it was perceived in "background" mode. In fact. we are not consciously

aware of most sensory data: our attention is freed for more important foreground processing.

However. I do not want to push this analogy too far: our own sensing and "modeling" is highly'

parallel. and cannot to be matched by synchronous, serial processing on a computer. My point is that.

if machine sensory/lodel processing can also be formulated deterministically. in the same way as

niodeliniz ;toraee requirements, then a dedicated sen-orv subsystem can free-rnn uqming the Imp-level

model to buffer higher-level processes.

This functional partitioning can also facilitate the separation of an application's hardware base

into independent processing modules, For example, measurements can be filtered by a digital signal

processor, and state estimates streamed to a separate event processor. The event processor max

consider independent sensor events and g.nerate a local model of each exent as a vector list to be
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manipulated by a global modeler. The global model might reside in shared memory ,Ahere it is

accessible to other ftnctions, or a dedicated feature extractor could service requests from higher-lexel

processes o,.er a lov-bandvidth communications channel. Such partitioning has proided the basis for

an application oxer a broadband network, in which sonar event ectors from an ROV operating at the

xAaterfront were received by a real-time display processor in the laboratory, half a mile away. I also

expect this kind of network configuration to become the norm in a shipboard setting, where many

scientists and engineers will share the enormous amount of data corning from a suite of high-resolution

sensors.

3.3.3 Mapping Feature Vectors Through Model Space

Before going on to specific modeling processes in the next sections. I discuss the data flow of

Figure 3.1 in more detail here. My reasons for doing so are to: give a perspective on the larger

modeling framework-the "big picture"-before elaborating on the pieces: and establish the

terminology and notation to avoid later distractions.

First. I adopt a vector representation of dimensionality high enough to accommodate all sensor

measurements and derived features over space and time. Using the notation outlined earlier, a feature

vector has the general form:

v = u0 , ut ...... un}

Second. I consider a class of functions that map vectors through model space in a hierarchical manner.

Such a vector function is denoted as:

f = Ifo. fl. .... fn)

and a vector mapping can be expressed as:

w = f(vo.v I ..... Vn)

or: w0 = fo(vo) = fo(uo. u1 . . . . . u1n)

w 1 = f(vt)

,,= f~o(v.)

and so on. .\s before, the set notation is used as a reminder that we are dealing with a deterministic

number of transformations, and all vectors and mapping processes can be enumerated. Otherwise, I
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haxe only maintained a generality that preserves an option to use the many mathematical, heuristic, and

engineering tools in a manner most suited to the application.

3.3.4 A Sonar Modeling Example

At this point. I leave the more general discussion and notation with a reminder that the

representation and processing to be formulated is largely suited to different sensors and modeling

applications. To clarify the issues, though, I give an example of building an acoustic model from sonar

data. In the rest of this section I describe the feature vectors and mapping functions of a sonar model

in a general manner, then give a detailed discussion of the modeling processes (mapping functions) in

the next two sections.

I consider a pulsed sonar that returns a continuous stream of discrete, intensity measurements.

and assume that position and attitude measurements are also taken at an appropriate data rate. I define

the measurement vector as:

p in -- It.x .i.0 . .o Cr}

where: x = {x,yz

x = ,.v

a = t.ax. V,,CF.a ,a, a}

To avoid notational complexity, I do not use the subscript m for all the individual measurements: the

meaning should be clear as indicated and the subscripts are assumed. As before, t is time: x is the

sensor's position in 3-space, and x is the first positional derivative, or translational velocity: a is a unit

vector defining the sensor look direction, and 6 is the look-angle velocity vector: p is the acoustic

intensity measured by the sonar, the primary sensor: and a bold p denotes the entire measurement

vector.

Here. all information iq e'plicitlv repre-ented and pa~ed to the qtate ettimtor in the

measurement vector: the intensity is tagged with time, position, and attitude. I also express a measim,

of confidence. a. associated with each parameter. Normally. this would not be included with the raw

measurements, but more intelligent sensors could furnish such an error estimate as part of their

function. a, models the uncertainty in any absolute measurement of time. In a general case where
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information is contributed by multiple sensors using different time bases. perhaps from widely

distributed locations, it may be significant.

A state estimator then receives this stream of measurement vectors, applies a state mapping

ii,1(i:o.,'. re. and generates a stream of state estinates. In this transformation, the outputs from nonideal

sensors corrupted bv noise are combined with consideration to a physical model of the sensors and a

dynamic model of the system. For example, I apply a Kalman filter [Gelb. 1974]. a recursive.

stochastic estimator of the form:

Pe(t+) = fe(P"(t),Pe(t.))

The plus and minus signs indicate that the new estimate, made just after a measurement is taken at time

t. is based on the previous estimate and the new measurement.

Measurements also may be smoothed (a weighted combination of earlier and later

measurements). Such smoothing introduces a delay but, if real-time constraints are not restrictive.

smoothing generally produces better results. Various approaches to smoothing and estimation have

been taken, deterministic and nondeterministic [Gelb, 19741. The received sonar signal is usually

filtered in hardware, but more filtering or processing might also be performed by the state estimator

(for example. thresholung in software to estimate the ranges of strong sonar targets). For this

example, the state estimate is:

Pe = {t'x.p'}

Here. the first derivatives are ignored since they are only modeled to improve estimates of position and

heading. If Doppler effects were of interest, i could be included.

My development in this section so far has followed traditional methods. However, the event

processor, which I describe fully in the next section, reflects a new approach to mapping a state vector

(a function of time) into an event vector (a function of time and space). For now. though. I merely

denote the event mapping function as:

Pk = f(P,.)

A simple form belies the potential for a complex transformation. Implicit in the event processor is an

expert's knowledge of the physical basis for that class of events. The event vector is given as:

Pk = ix'p'a1'f
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All uncertainty-spatial, rotational, detection-has been merged into one parameter, o'. that expresses

a level of confidence in the estimate of p at each point in space and time. The subscript k denotes a

model vector of the klh event (time is implicitly associated with an event).

The event vector is a model vector of the same kind discussed in Section 3.3.1, since it has been

mapped to a form that can be merged with a local or global model. In a sense, the event comprises a

local model of the event space defined by the sonar's detection envelope. In Section 3.5 I describe

stochastic backprojection, the process by which events are aggregated. but indicate the modeling

transformation here as:

Mk = fM(Pk,Mk.I)

where: Mk = iX.PM.aMl

This is a recursive process of the general kind described earlier. I would like to strengthen this

analogy by likening Pk to a "measurement vector" that is combined with the previous "state estimate."

Mk.!. to generate a new estimate with information derived from the event. In all essential aspects. the

global model represents our current best estimate of the modeled parameters (state variables).

From the stochastic model, the feature extractor can derive a "deterministic" estimate of such

environmental features as shape, surface normals, acoustic scattering properties and so on. I give an

example of a feature mapping function in Section 3.6, 1, and discuss other approaches in later chapters:

for now. I consider it as a "kit" containing tools of the general form:

F = fF(M)

This can be a computationally expensive step. asynchronously executed only as the application requires.

or a more economical operator applied concurrently as the model is built.

Again, the deceptively simple representation may obscure profound, domain-specific knowledge

imbedded in the function. However, the sensor-orierted. physical perspective on model building

presented so far should be distinguished from the evaluative or interpretive feature-extraction processes

that ute the model. The latter may he categori7ed a operators acting on intrinqic propertie-s nf the

model (image processing. pattern analysis) and those that bring to bear extrinsic knoxledge ,context.

prior data), adding information in the process.

I use the term feature vector in a broad sense to subsume all the previous vectors, but more

specifically to denote a derived type. For example, an estimate of the seafloor surface from pM. an

estimate of the surface scattering albedo. or some higher-level classification or display representation
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based on the two is considered to be a feature (of the environment) that may be inferred from the

model. In this example, I assume the model is used to estimate surface shape, and indicate the feature

vector as:

F =1'xt

or: Z = fx.y)

where Z is a two-dimensional terrain map that describes the distribution of depth over the modeling

region.

In summary, modeling vectors and mapping functions offer a consistent analytical framework for

the modeling representations and processes. The feature vectors given in !his sonar example are:

P ,, = {t'X'i', .&t'P'*

Pe = Jt~x.ot,p,cr}
Pk = ix~p'UP1

M = {X.Pm,a}

F = jx

From each level, the transformations move generally toward a vector space of lesser dimension, more

girmane to the application feature(s) of interest. In the next two sections. I use this same sonar

example to elaborate on the key processing elements represented by the modeling functions. fk and fm.

the event processor and the global modeler.

3.4 MODELING A SONAR EVENT

The central idea to be addressed here is the distribution of information in a one-dimensional.

time-varying signal over a three-dimensional volume. For an ive sensor with one transmitter and

receiver (sonar. laser, or radar, for example). energy is projected into a region of space and may be

absorbed or reflected by one or more targets. Some portion of the signal may be returned to the

receiver after being attenuated or distorted by the medium and corrupted by noise. Passi'e senqoi

depend on a source of energy external to the system, perhaps originating from the target itqelf (paive

sonar, infrared). For both. however, the signal received at any moment ik gencral11 at summation of

the contributions from multiple sources or reflectors.

Because the received waveform is represented as a one-dimensional function of time. though the

sound energy has passed through a three-dimensional volume of space, there is an inherent ambiguity
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in localizing any target causing a return. Another kind of uncertainty arises since we may not detect

all targets. for example. if they reflect only weakly or direct energy away from the receiver. There is

also inaccuracv in our estimate of where the sonar is located and of the direction in which it points.

Acoustic noise. an inhomogeneous medium, and other statistical characteristics of the process further

diminish the information in the received signal.

Suppose we wanted to build a model of the spatial distribution of acoustic scattering in some

region. One thing such a model could tell us is the location of acoustic surfaces-the bottom, a

sunken ship. and so on. To match the cellular decomposition of space, the sonar's signal must be

mapped to a description that can be merged with the model. This will be a probabilistic spatial

distribution reflecting the uncertainties just mentioned. Because of the high data rates in many sonars.

the efficiency of such a process must be considered. By applying a series of constraints, the modeling

computation for each event can be reduced to a practical level for cost-effective field systems.

To examine the physical situation, I start from a version of the Sonar Equation [H-tolrol. 1959:

Urick. 1975], a system design tool that expresses the relationships in an intuitive form. An energy

balance lets us write:

RL = PL + DI, - TL. + S - TLr + DI,

where: RL = receiver !evel

PL = power level

DI = directivity index

TL = transmission loss

S = scattering strength

and subscripts "t" and "r" denote transmitted and received (reflected) paths. The terms are

logarithmic, and noise and other uncertainty are ignored for the moment. The equation simply says

that the level of die u.iis iitted signal (or energy) detected at the receiver will be proportional to the

power transmitted by an omnidirectional source, if you consider the directionality of the sonar

transducers, the attenuation of the medium, and the scattering properties of any targets in the region.

Given a phvical model of the sonar (power level ind directionnl rharicterk icr- of the

transmitter), an acoustic propagation model (sound velocity, absorption. and spreading losses) pro\ides

an estimate of how much energy will arrive at any point in space and time. If the scattering flnction of

a target at that location were fully known, we could also predict the time history of the detected signal

considering the receiving transducer's location and directional characteristics.
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Figure 3.2: Detection envelopes for a sonar event.

Starting the event, a transmitter at xt (refer to Figure 3.2) sends out a pulse of acoustic energy In

the direction c~t (m = {ot,13,y), the direction cosines). After a time, the attenuated pulse reaches a

target at x., which absorbs some energy and scatters the rest, Still later, this scattered sound reaches

xr, where there is a receiver pointing in the direction Cr This may be a different sensor, or the same

transmitting and receiving transducer, which has moved since the pulse was sent.

I assume that the medium is uniform, and that the only losses come from absorption by the water

and from spherical spreading as the sound moves away from the transmitter. This is a good

assumption over short ranges, but becomes less valid with increasing distance, as refraction and

multipath effects become important. In this homogeneous regime, though, we can talk about time and

distance interchangeably, since they are related by a constant speed of sound in water. Transmission
losses become a simple function of time (or range). and the transformation from a time signal to a

spatial distribution is more direct. Now we can parameterize the Sonar Equalion accoiding to ouw

model of the physical system, and rearrange terms to give:

S('E,xs) = RL(-T,xr) - jPL(tr,xt) + DIt(T,ctt) + DIr(,Otdr) - TL(T)]
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v, here -r is elapsed time from the start of an event. The DI terms now represent the sonar beam

patterns, rotated to their look directions. In this treatment, I have ignored any directional dependence

of the scattering term-in reality, a complex function of transmitter and receiver geometry. In later

applications, I show this to be a reasonable assumption for many purposes: in other applications-

sidescan sonar, in particular-the assumption leads to ambiguous results. I discuss scattering and

reflection more fully in Chapter 6 but, for now. I model it as a simple target strength, with uniform

scattering in all directions.

The important thing is that the terms in square brackets capture all our knowledge of the sonar

system itself and of the medium in which it operates. I refer to this as the detectiviry. since it is a

measure of how strongly a target must reflect for it to be detected in the received signal. As long as

the position and direction of the sensors are known, the detectivity of any voxel can be calculated

directly: then the received signal can be used to infer something about the scattering distribution at any

point and time.

For a given sonar event, the time origin is set to coincide with the transmission of an outgoing

pulse of short duration. After the signal is transmitted, the source position and attitude become

irrelevant and can be disregarded. At some later time, say tr, the attenuated pulse is detected at the

receiver. Given the position of the transmitter at the time of the outgoing pulse and of the receiver at

time t,. but without regard to the directionality of the transducers, a single target causing the return can

lie anywhere on an elliptical surface of revolution. In a real situation, however, tile signal may

represent the contributions from multiple targets. Under such circumstances, our knowledge of the

situation is limited to the summation of scattering strengths distributed over the surface. However.

there is other information that cap. Lie brought to bear-our model of the transducer beam patterns.

Considering only the transmitter, an envelope may be constructed beyond which a signal is

attenuated to such a point that it cannot be distinguished from noise. In other words, suppose the

position and attitude of the transmitter is fixed and the receiver is moved throughout space so that it is

always pointing directly at the source. In some locations the transmitted pulse will be detected. In

others it will not. The locus of all points at which the pulse is just detected will form a closed surface

beynnd which we cannot J.":"- .. ''- tion from an e"'zr*

The boundaries are a function of power level, transmitter beam pattern, transmission loss. noise

level, and receiver characteristics, excluding the receiving transducer's directivity. By fixing the

receiving transducer and moving the transmitter through space. a receiver envelope is defined

analogously. Outside these surfaces, the possibility of detecting any passive reflector is nil. The

intersection of the source and receiver envelopes bounds a region from which a scattered return must

have come: this is the detecion envelope for the event. Combining this information with the detection
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time any targets contributing to the received signal are constrained to lie on a surface patch of the

ellipsoid.

3.5 STOCHASTIC BACKPROJECTION

Considering the constrained surface patch, the signal received at tr is, in a sense. the three-

dimensional equivalent of the ray sum defined in Section 2.5.1 (see also Norton and Linzer (1979a, b]).

In the absence of noise, it is the integral of scattering strength over the surface, modulated by power

level, acoustic attenuation, and beam patterns:

g(trX ) = is P(Xtl(trb(tr., t)S(trx)dS

where: S = surface patch

p = transmitted power

V = attenuation

b = composite beam pattern

s = scattering strength

This can be simplified slightly by noting that, for a short pulse, the power and location of the

transmitter are independent of time after the pulse is sent. Also, the attenuation is constant over the

surface since I assume a homogeneous medium. Finally,, I assume a static environment in which the

point targets do not change position, and drop the time notation since we are only considering one

range. Then:

g,.(x) = Kr s b1(x.aL)s(x)dS

where the power and attenuation terms have been combined in the constant K, and the subscript r

denotes a particular range surface.

If we consider the entire signal for that event, it corresponds to a sequence of surfaces, and the

time qienal with a zeqttence of -zrirface inteernlk (or ,iemmatinnr. in the dicrete ci-et Thi k i-v three-

dimensional projection over ellipsoidal surfaces, shaded by the beam patterns, or:

g(x") = KrI b(x".cx")s(x")dS"
S"

where the double-prime notation indicates that the projections are taken over arbitrary translations and

rotations.
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With an ensemble of N such projections. not necessarily of equal spacing, we can formulate a

reconstruction problem as in Section 2.5.1: given the projection data gk(x"), k = 0 ....... N-I.

construct the original scattering distribution s(x). Important issues here are: (1) ellipsoidal strface

projections: (2) attenuation and shadowing; (3) beam-pattern effects; (4) reconstruction method: (5) 'he

role of uncertainty.

First, the curved range surfaces are inconsistent with most previous approaches to the

reconstruction problem. Other researchers [Das and Boerner. 1978; Denton et at., 1978: "ockmore et

al.. 1979: Rockrnort, 1981] circumvent the problem by approximating each surface as a plane. Norton

and Linzer [1979b] begin with a spherical geometry but make simplifying assumptions leading to

equivalent results. This leads to an analytical tractability but introduces some error. In the numerical

approach taken here. such an approximation is unnecessary. The curved range surfaces are modeled

exactly, except for some quantization error in the discrete cellular model.

Second. I assume implicitly that the distribution of targets is sparse enough that scattering at

close ranges does not prevent the signal from reaching targets further away (the weak scantt'eirg

assumption of Nortoln and Linzer [1979a, b]). This assumption is not always valid. For example, the

signal received from a down-looking sonar would not be meaningful beyond the bottom return. This is

accommodated easily (if the bottom can be detected) by ignoring the signal after the corresponding

time. Das and Boemer [1978], and Rockmore et al. [1979] also discuss this shadow boundarQ. In a

numerical approach. losses can be compensated at any range simply by inverting the assumed

attenuation function, the basis for TVG (analytically, it is more difficult, but Budinger and Gulber;

[1974] present several approaches).

Third. the beam-pattern also introduces a weighting of the surface integral. As such. a simple

inversion, like that applied to the attenuation, does not work here. At the boundary of a detection

envelope, the transducer's directional sensitivity approaches zero and an inverse compensation

approaches infinity. Obviously, this is the wrong way to look at it. Rockinore [1979] also discusses the

problem but offers no definitive solution. Norton and Linzer [1979b] assume omnidirectional sensitivity

so beam-pattern effects are not considered. I take a heuristic approach described later in this section.

As discussed earlier, traditional reconstruction techniques rely on a fixed geometrv and regular

scanning pattern. An exception to this is the backpiojectiou (sumuatlioun) inethod. IhumcLh it i,

formulated in that context. This is the approach I take to incremental modeling and denote it as:

N-1

MN = Ef(")gk(x")/(N" K)
k=0
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,here: NI = :x~p' a

and: f(x") is a beam pattern compensation function

In other words, the global model. MN. is formed by the backprojection and summation of N event

vectors. With no uncertainty, the general algorithm would go as follows for each event:

I. Isolate the volume defined by the intersection of the detection envelopes and form a list of voxels

ordered by discrete range surfaces.

2. For each range surface, compute the value of each voxel as the product of the inverse

attenuation and the received signal for that range, and apply a beam-pattern compensation

factor.

3. Backproject the list into the global model and sum the new values.

4. Normalize each accumulated value by the total number of operations on that voxel.

Other than formulating a more general numerical approach to the geometry, the main difference

here is that I have adapted the backprojection algorithm to satisfy the incremental modeling criterion

established earlier. A consequence of using this technique is the introduction of reconstruction

artifacts, as discussed in Section 2.5.1. However, as shown in the next chapter, the method produces

results that compare favorably with standard techniques.

Going now to the question of uncertainty, I first equate the beam-pattern ambiguity with

uncertainty introduced by attitudinal (or pointing) error. Strictly speaking, this is incorrect. In effect.

though, both sources of uncertainty limit our ability to localize a point target that contributes to a

received signal. For a single event, all we can say is that the target lies somewhere on a range surface.

Consider a very narrow-beam sensor-a laser, for example. With no attitudinal error. a point

target detected at some range can be localized unambiguously (or. at least. to within very tight bounds).

If we allow some error in sensor attitude, then the highest probability of the target's position lies on the

estimated axis of the beam. and the probability falls off away from the axis. At a given range. with no

raniing uncertainty, the localization prohahilitv function forms a range surface. That function is

equivalent to the convolution of the pointing-error probability density function (pdt) 6ih ihe ewz-

beam pattern, which approaches a delta function for a laser.

For a wide-beam sensor. the target causing a return also is most likely to lie near the axis of the

beam. My argument goes as follows: consider a sensor fixed in space, and a target of given scattering

strength moving along a range surface. At some angular distance away from the axis. the received

signal will fall below a threshold and the target will not be detected. That threshold may be set
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arbitrarily in the receiver, or it may be imposed as a floor level determined by noise. For another

target of lesser strength, the angular cutoff point will lie closer to the axis. If we assume a spatial

distribution of targets with a distribution of scattering strengths. then for any range surface, more

targets will be detected near the center. An assumption of fixed targets. and a distribution of events at

different look angles. produces the same conclusion by duality.

I contend this is a true proposition though it is derived purely by logical, physical arguments.

However. to establish a more concrete relationship between the received signal and any scatterers in the

region requires two missing pieces of prior statistical knowledge: (1) the spatial probability distribution

of point targets and (2) the probability distribution of scattering strengths among those targets. With

such information in hand, an application of Bayesian techniques might be used to generate a

localization pdf for each event: but for unexplored terrain, such information will not be available. Even

if long-term statistics had been compiled, the probabilities would be highly variable and dependent on

the direction in which the sensor was looking-at the bottom, at the surface. through the water

column.

To sidestep this problem. I use the normalized beam pattern itself for the localization function-

the boundary conditions are correct and it has the right general shape. With this assumption. an

angular localization function (ALF) is formed by convolving the beam pattern with the pointing-error

pdf. Other assumed error pdf's are incorporated in the same manner. This includes any uncertainty

in position, range resolution, or timing. Error caused by ray bending or other distortion in an

inhomogeneous medium might be accommodated also, though the computational complexity could rise

significantly if these were modeled accurately.

Alternatively stated, the error pdf's are convolved with the detectivity. A physical interpretation is

that any uncertainty in position or attitude. for example, will tend to smear each surface distribution

through space and reduce our confidence in an estimate at any point. The outcome is that the surface

now corresponds to a thin volume of space. The pdf over that space. which I call the composite

localization finction (CLF), is related to the likelihood that a point target at any voxel within- the space

contributed to the received signal at t.

A final modification to the algorithm convolves the CLF with the backproiected signal. and

accumulates the CLF separately for normalization. In such a manner, the beam pattern ambiguity and

other sources of error are represented: and as error approaches zero and the beam pattern narrows, the

CLF approaches a delta function and the result becomes an incremental backprojection and summation.

The disadvantage of such an approach is that the more explicit error characterizations are combined in

a single measure of (un)certainty. However, this can be interpreted qualitatively as a measure of the

information content for each voxel. The advantage is comptational efficiency. For high-resolution
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three-dimensional models, such a tradeoff-real-time performance against fidelity-may be acceptable.

Later chapters show the outcome of these assumptions. To summarize:

hatx") = b(x" .a")*h (t")

hx") = h8 (x")*h (x")

N-i

HN(x) = , hk(X")
k-0

N-1

SN(X) = E hck(X")*gk(X")/(K" HN(x))
k-0

MN(X) = {SN,HN}

where: b = composite beam pattern

h, = attitudinal error probability density function

h, = positional error probability density function

ha = attitudinal localization function

hc  = composite localization function

HN = global certainty parameter

SN = global modeling parameter (acoustic signal)

M N = global model

We can see there are two competing forces at work here. The cumulative constraints imposed by

an unmodified backprojection method tend to sharpen the model, and compensate for the degradation

caused by the range-surface projections. At the same time, the model is filtered, or blurred. by

purposeful convolutions with the error pdf's. One might argue that the convolutions should be omitted

and a better model would result. Certainly a crisper model would be produced, but the quality would

be illusory: the convolutions explicitly represent our best estimate of uncertainty. For an autonomous

system, it is just as important to model the unknown as the known, and avoid unjustified assertions

about the world.

The advantage of filtering at this low level is that uncertainty can be represented more accurately

according to the cause, amount, and direction. Beam-pattern ambiguity and pointing error are

distributed omer a curved surface. ranging error along the axis-each i- in proportion to itq ow-n degree

)f uncertaint,, and in the right spatial frame as it is incorporated in the model. The alternatiw_ of

filtering the finished model according to some average error--convolution with a symmetric Gats-ian

kernel, for example-underestimates uncertainty in some directions and overestimates in others, The

argument holds also for the introduction of backprojection constraints in proper global coordinates, as

the model is built. To paraphrase Rockmore [1979], we should process the'n threshold. or extract

deterministic conclusions from the model.
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Fhe example used in this development is that of an active sonar, the bidvnamic case where

transnitter and recei,.er are separate and in motion (after discussing the constrained surface patch at t,.

I dropped the time notation as a convenhence). Yet, because of its generality--a numerical formulation

in the spatial fand temporal) domain-the method can be extended to passive cases (for a related

discussion, see Rockinore. 1979) and other sensing modalities. The physical model of an underwater

scanning laser, for example. could be formulated and substituted for the sonar model to produce similar

results. A tactile model, built with a robotic arm, is also feasible. My intent has been to develop a

general approach to incremental modeling largely independent of range, resolution. and sensor type.

3.6 GLOBAL MODELING

In this section. I give two hypothetical examples of sonar modeling that provide more elaboration

of the algorithms and notation applied to specific cases. In the first type, which I call a biliary Inodcl, a

profiling sonar returns a thresholded range to target. The model uses a normalized scattering

distribution representing the probability that a voxel is occupied. without regard to absolute target

strength. In the end. a binary decision is made on whether the voxel is empty or full. The second

example is that of a two-dimensional continutous model, the intensit, map produced by a sidescan sonar.

In both examples, and in those of later chapters. I assume that the same transducer acts as transmitter

and recei,,er. This is usual in most applications, and is less burdensome computationally for modeling

simulation.

3.6.1 Binary Model

As an example, I consider a free-swimming vehicle with a down-looking, high-frequency (say.

500 KHz) profiling sonar that models a static terrain (refer to Figure 3.3). The sonar uses a plane

circular transducer as transmitter and receiver, returns a thresholded range to target. and has a

maximum range Rt..ax >>50 m. For a reasonably stable platform and short return times (say. range <

50 m). sensor motion will be small during an event, and time variations can be neglected. I assume a

homogeneous medium. stationary white Gausian noise in all measurements, and that a Kalman filter

generates the state estimates. From the Sonar Equation:

S(x) = RL(x) - [0 + 2DI(oz) - 2TL(r)j

Since the actual received signal is not available, the model is cast in a "normalized" form. Folloming

earlier convention:

- 65 -



xM

cos' Y

Figure 3.3: Geometry for three-dimensional modeling.

PM tXm.Xm 'LM &mR

Pe= t'Xe.cze-R.GK)

Pk =ixPap), r <R + f(ar), e <
S = 'xS,0

z = X)

where: R =range return

r Ix -=

e =cos-'(Cug (x-xe)Ir)

e, - defection -en velope half-aatgle

9:= comnposi te -localization -envelope half-angle

As before, p... an6 P are the measurement and state vectors. The first derivatives of position and

aittitude are only measured to refine the state estimates for x. and at As indicated in the figure. a
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represents the direction cosines. I use the subscripts tn and e to distinguish the position and look

direction of the sensor itself. The unsubscripted terms refer to parameters of each voxel, which vary as

the calculations are perforned throughout the localization envelope. Accordingly, x gives the absolute

coordinates of a ,oxel: r is the range to a voxel from the estimated sensor location: a is a unit vector

from the estimated sensor location to a voxel: and e is the angle between the sensor look direction and

the unit vector to a ,oxel.

For a plane circular transducer, the beam pattern can be modeled as a first-order Bessel function

parameterized by transducer diamet, r and acoustic wavelength [Urick, 1975). The detection-envelope

half-angle. e. , is taken at the secon I null so the first sidelobe is modeled. The composite-localization-

envelooe half-angle, 9 c . is defined as the angular extent of the composite localization function, after e,,

is blurred by the error pdf's. a, comprises the main diagonal of the covariance matrix for a discrete

steady-state Kalman filter. Z is a surface depth map, a feature extracted from the global scattering

model. S. The mapping functions are:

fe = h XX)h (m')gR r ' '

0, r<R

gR - r = R
undefined. r > R

hK = Kalman filter

fk= fx(ra),g,(r.e).hc(r,e)}

fx = xe + ra

g.. = h,(r.0)*g, (r)

hc = G(OYr)*G('ge)*b(E)

I - e - r. r < R
gP= e-vr. r = R

0.5, r>R

G(o) = normalized Gaussian distribution

a R  =range variance

a r  --- composite range variance := +!(Y.

ao = composite angular variance : = + I,I/Rvg

Ravg = average sonar range := Rmax//2

V = normalized signal parameter :- e - Rmx = 0.5
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fM= 1XfS(Pk-Sk-1).fH(Op.'Sk-l)

fH = OY P + O'k 1

fs = (Pkap +Sk- d/aSk

fF = jht(z.S)}

ht = EzS(z)/E S(z), S>ST
z-O z=O

ST = scattering thresholdz - 0.7

Z = number of voxels along depth axis

In practice, we want to avoid the computational expense that would be incurred if all convolutions

were performed for each event. There is another assumption that reduces the computational cost to a

practical level-for stationary noise the error pdf's are constant. And because the detectivitv is also

fixed for a specified sonar system and medium, some convolutions can be precalculated numerically.

By taking advantage of axial symmetry, the real-time computational load can be lightened even more.

For an axially-symmetric sonar beam. ha is precalculated at the beginning of a computer

program, and accessed from a lookup table indexed by the angular offset. 0. of a voxel from the bean

ax's. The translational convolutions are resolved into axial (a,) and radial (Ce) components at some

average range. If the radial convolution is incorporated in the lookup table, we are left with a one-

dimensional convolution along the sonar axis. This is an inexpensive operation in a three-dimensional

world, and can be carried out on the time signal for each event.

Note that the modeling process is almost entirely deterministic with these assumptions. Except

for the one convolution, the modeling has been reduced to an ensemble of point processes. Neglecting

the one-dimensional convolution, the processing load is a function of the number of voxels

encompassed by each event. The actual processing load for each event depends on the returned range.

but the computational expense is only O(R 3) (the requirements could be much worse for a three-

dimensional implementation). In fact. this still let, ts place an upper hound on computntions. zince

the maximum range is limited.

The normalized signal. gp. represents a heuristic extrapolation of the received signal. The value

ranges between 0 and 0.5 at ranges less than R. and between 0.5 and 1.0 at R. Here the normalized

signal is interpreted as the probability that a given region of space contains a target. For ranges less

than R, the signal is below some threshold (normalized to 0.5). and the corresponding volume of space
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is probably unoccupied b% any significant scatterers. For a value of 0.5. uncertainty is greatest and the

odds are even that a \oxel is empty.

The normalized signal parameter is defined with respect to the maximum range-the distance at

which the signal is masked by ambient noise and no information can be extracted. At shorter ranges.

the signal-to-noise (SIN) ratio is greater and the probability of detection increases. The approach is

similar to that taken by Moravec and Elfes [1985], except that a S/N-dependent uncertainrv is explicitly

represented.

The depth map. Z=f(x.y). is a single-valued function over a two-dimensional grid. The depth is

estimated as the first moment of S on a vertical column-by-column basis, for values of S greater than

an arbitrary threshold (see Section 4.2). With a downward-looking sonar-largely incapable of

detecting overhangs or vertical scarps-this is a reasonable approach. For fully three-dimensional

geometries, a more sophisticated technique would be needed to extract surface features from the

probability distribution. I discuss this further in the next chapter. and use simulation results to clarify

the process.

3.6.2 Continuous Model

In this next example. I look at an uncalibrated near-bottom-towed sidescan sonar (refer to Figure

3.4). which applies an "unknown" time-varying gain (TVG). and returns a digitized signal. The

system operates in the medium-frequency band (say, 20 KHz) with a range of several kilometers. In

this regime. ping cycles are on the order of 10 s and platform motions can degrade the received -,ignal.

In particular. I assume pitch and roll stability, but excessive yaw, and formulate a corrective gain. A

two-dimensional model is used. and the planar-bottom assumption is applied for slant-range correction.

As before. I assume a homogeneous medium, stationary white Gaussian noise, and a Kalman filter for

state estimation. From the Sonar Equation:

S(t.x) = RL(tx) - [0 + 2DI(t2.(x) - 2TL(r)]

Like the previous example. a calibrated signal is unavailable. However, with several assumptions. the

sonar output can be cait in a normili7ed form for modeling, The modeling vectnrR are:

6e = 't.Xe, e-.S. .,K

Sk = !xSa if r < R nax +f(aR). e < E,
S = Jx.S'as

I = 6s9
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x

Figure 3.4: Geometry for two-dimensional modeling.

where: x {x,y}

r c-t/2

c local speed of sound

6 demodulated sonar signal

For a rectangular source, the along-track beam pattern can be modeled as a sinc function

(sin(x)/x) parameterized by transducer length and acoustic wavelength [Urick, 1975]. As before, the

detection-envelope half-angle is taken at the second null, and aK comes from the Kalman-filter

covariance matrix. The feature vector, I, directly corresponds to the model, an uncorrected intensity

map. The mapping functions are:

re = { hp (Xm,*m),hK (r'&m)' 7 }

ft= {fx(r~a),gcjr,e),hc(r,e)}
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=x t + o [rz-a 2] -

g, = h,(r.))*g6 (r)

hc = G(aR)*G(o=)*b(e)

96 = gN(dQ)hN(j.k)Sjk

hNjk= ilO/jk' 0 < jAr < R,,.

r.k = Kjk+(I-K) 6 j'k-I. kO. O<K< I

rIJO = Sj0

9N= 'Y(0) e bhT(d)$gN(-- e .,l( #

V(dN) (eb-dQ)

(): = b(O)*b(E)

Ar= discrete range increment

j = range index

x. = Dosition at transmit time

S= heading at transmit time

a = altitude over bottom

rlo = normalization constant

K = filter constant

fM= X'fs(6 k,Sk-1),fH(76'-SOk_j)

fH = ab + °a' k -

fs = (6ka6+Sk-l)/Sk

f = S

With a few exceptions. the development and notation are the same as in the previous example.

The slant-range correction uses the standard assumption that the seafloor is generally planar. and at an

a~erage distance below the sonar equal to the measured altitude (derived from a separate sonar altimeter

or hottom-detect time from the sidescan). This is not always a good assumption (discussed further in

Chapter 0). but it allows some correction for the imaging geometry. I also drop the translational-error

conolutions under the assumption that the relative positioning between neighboring ping locations is

good. For towed imaging purposes, this relaxation is appropriate to the application.
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Before mapping the sonar signal into model space, two corrections are ap~plied. The function hN

is an adaptike normalization that helps compensate for attenuation and average grazing angle for each

range hin, A static TVG. built into the system, is based on average conditions-towing altitude.

acoustic attenuation, bottom scattering strength-and will be less than optimal for specific conditions.

The time" constant. K. controls the rate at which a simple recursive filter estimates average signal

strength at each range. This is inverted and multiplied by rlo . chosen to maintain the normalized signal

in a convenient range for display or digital recording.

The second correction comes from a simplification of the bidynamic formulation of Section 3.4.

With one transmit,'receive transducer and no sensor motion, the received signal is weighted by the

product of the beam-pattern sensitivities integrated over a range surface-for a finite pulse width, this

defines a surface area of the bottom. For a short pulse length. though. the same bottom area (for a

given range surface) is ensonified regardless of the transducer's motion after the pulse is transmitted.

.Assuming a small angular displacement. the received signal is attenuated because (1) the intersection of

detection envelopes (bottom scattering area) is smaller, and (2) the integral of the beam-pattern product

is reduced.

The reduction in scattering area is linearly proportional to the angular displacement. The

attenuation caused by the beam patterns is proportional to the ratio of the beam-pattern integral at the

displaced angle to that at a zero displacement Considering the integrals at all possible displacements.

this is simpl, the convolution of tle beam pattern with itself. Then the correction function gN can L,c

precalculated numerically and indexed by the relative yaw. dN. and applied to the recei'ed signal. An

implicit assumption is that the sensor translation is small with respect to a range arc. which is

reasonable for such a long-range sonar. The signal is then backprojected onto the plane into the area

defined by the transmit detection envelope.

3.7 SUMMARY OF IMPORTANT POINTS

In this chapter I have presented a broad concept of modeling underwater. provided an analytical

framework for considering different sensor models, and described two hypothetical examples to clarify.

the ideas. The basic philosophy that guided this development is outlined in Sections 1.5 and 3.1 . and I

do not reiterate it here. However. to summarize a few important ideas emphasized in this chapter:

Stochastic hackprojection comprises two competing forces: sharpening introduced by

accumulating constraints, and blurring from the explicit representation of uncertaint,,.
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Cumulative constraints come from the redundant information available from modern high-
bandwidth sensors, and can be combined with an incremental summation algorithm.

The explicit representation of uncertainty is important to avoid unjustified assertions about the

world, particularly for an intelligent autonomous system.

By combining physical and sensory data at a low level of representation. high-level processes

can avoid information overload: process then threshold.

A low-level model can serve as an intermediate representation that decouples high-bandwidth

sensory processors from more asynchronous information extractors and consumers.

Tradeoffs of fidelity against real-time performance are inevitable and acceptable for high-

resolution three-dimensional modeling.

Model size and processing load can be bounded, and processing resource requirements can be

forecast. The actual processing load is on the order of the range cubed.

By partitioning algorithms into preprocessing and real-time components. computational

performance can be enhanced to suit cost-effective field systems.
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Chapter 4

COMPUTER SIMULATIONS

Several computer simulations were developed early in this research to scrutinize first assumptions

and to focus on important issues. Simple representations of active sensors with random noise

components were used to generate measurement vectors for processing by an event modeler. Most

simulations are of sonars. though the effect of a narrow-beam sensor (laser) was examined in a few

cases. Figure 4.1 shows a data-flow diagram for the modeling system. Except for the positioning

component inside the dashed lines, the same process was also tested on field data (the results are given

in Chapters 5 and 6).

The three-dimensional cone in Figure 4.2 is a simple model vector that shows the probability

distribution for a binary sonar event. The higher probabilities denote a greater scattering strength.

corresponding to a strong sonar return at that range Because of the uncertainty discussed earlier, the

range surface is smeared over a volume. The lower probabilities represent a region of space through

which the sonar pulse has passed without detecting any targets. The scattering probability decreases

toward the axis of the beam and closer to the sensor bt.cause the sonar's signal-to-noise ratio is higher

there.

The next sections show the results of several different kinds of simulations. First. simple two-

dimensional geometries are used to demonstrate basic properties of the backpro.jection approach. In

Sectinn 4.2. ;everal three-dimennional hinnrv irrulationz qhow the effect of modeling naitrl terriill

and regular geometric features over different ranges of uncertainty. The next section denionciiate

terrain-relative positioning using a stochastic model. The chapter concludes with a summary of

simulation results and important points.
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Sa State s System External

D Input r'-C Process ' Database ID Output

Figure 4.1: Data-flow diagram.

4.1 SENSOR MODELS

Figure 4.3 shows thle geometry for a generic reconstruction simulation in a two-dimensional

setting. In this scenario, there is a single point target at the center of a circle with a radius of 600

units (the units are nondimensional but were mapped to frame-buffer pixels for convenience). An

active sensor moves around the circle and illuminates the central region from different look angles.
Here, I assume perEvect compensation for attenuation, no position or attitude error, and model the CLF

as s eparahle function of axial and angular uncertainty so that:

hc h= h(8)*hf(r)

h= cos(e)-cos(ec) e< e
I -coS(Oc)

hrM= Go-rb/r. r < wao
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Figure 4.2: Probability distribution for a sonar event.

C = 12

OR= 2.5 units

The two functions are chosen purely for computational convenience. The formulation for he produces

a cosine-like "beani pattern" 24' wide. The ideal, normalized signal received hiv the sonar and the

c'Iflposite modeling tunction are specified as:

g 0, r< R
g= , r = R

0, R < r <Rm,

g, =h(r,0)*gp (r)

The mapping functions, fk and fM, are identical with those of the examples in Sections 3.6.1 and 3.0.2.

liirqt, conider the wmral approach. At position x, (refer to Figure 4.1). the sen-or emitq a po ke

of energy in the direction c,. offset from the center where the point target lies. A threshold is applied

to the received signal, and the target is detected at range R. Though the return may have come from

any point on the range arc shown in the figure, a simple deterministic assumption fixes the position at

x,,. directly on the sensor look axis. At a later lime. the sensor sends a pulse from x, in the direction

ot, and another target is assumed at x, 2 .
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X1

600 units X2

Figure 4.3: Omnidirectional reconstruction: scanning geometry.

If the sensor traced a path around the circle, and emitted regularly spaced signals, the locus of

all assumed target positions would form a small circle (dashed line) around the target location. I have

assumed a regular scanning pattern and a fixed angular offset from the center, but a similar result

would occur for a less regular geometry-an irregular closed shape. or a scattered cloud of assumed

locations. My point here is that a simple deterministic approach (threshold then process) can easily

lead to erroneous conclusions. A higher-level process that attempts to make sense of the target

distibution, with no model of the sensor, might assume either one large target or several small targets.

Figure 4.4 shows the stochastic model after the first event at xt has been backprojected (onlv the

central region-800 X 800 pixels-is shown). Here, the global model is identical with the model of

that first event. The target-localization probability is distributed along a range arc, and smeared over a

finite area. But there is other information now in the model-the region through which the signal ha
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Figure 4.: Omnidirectional reconstruction: one event.

Figure 4.5: Omnidirectional reconstruction: two events.

- 78 -



passed is iundicated as probali e m pty, wit h a degree of probabili ty that depends on thle detect ki iv at

Cach Zrnd Cell. [or a free-swiming cli ide. this kind of in tormaton is equally iportant. for

exam pe. to pian a path th ma eh the recion. In this imodel,. the informatkio is explicit, and does no0t

reqJuire a :oniqderationl of all1 objects in a database to establish that indirectly.

The illdel also represents ouir lack of knowledge about thle area, For example. thle region

ni hbOri n thte rangce arc has transitions from low probabilities to high_ Here, cells have values near

15. and u itertai iq tv s Cretst With an insider's vie of the simulation, it is easy to see tor those

pixel that "ricertainix is associated "~ih the axial anld angular error How~ever, the area outside the

detection i. elope is an m'smmr regi. Asi. Anplv because the sensor has not sampled there. Vhe

mi ortance ot model ing such Iinoraiice explicitly is tat it can be used to guide the dcx elop in of

mtaim to 6il inr in tormnun gaps. I tmention this again briefly i Chapter 7.

In Fi cure 4.5. an cevcut at x, has been bac kprojected and combined w~ith the first. Ciompared

nijth Rui r 4 4. the txox localization distributions along te arcs haxve been decayed, and the

intersection. Ashere the target lies, has been relatixely enhanced. Trhe star-shaped artifact of the

smtil tioi tltstlod(ldescribed in Section 2.1AI) is analogous to the crossed target-ray sums at this step.

e. ~er . t b se rays represemnt fiiite probabili ty that other scatterers may still be located along the

arcq Real objects. "Ait complex scaterig properties. may become effectixely imnisib-le w~ith only a

'.Inal I chattee inl look direction.

In) a eie.the model oIf FigAure 4,5 gixe tWe graphical equinalent of a tax gatrs txo)luoitt fi.

'uiclu an1 aitalxtical solution cait also contain an error estinme, though the geonterv nAi h e

ti 'iubesotte . A.s mole returns accuittuilane. howexer. the (alvktical model rx sill si7e and

coittplexitv. and ail exact soliution is unlikely to bie maintalited. Similar Iv. object- or ftur-baed

models expnd is more data arrixes . In theory. the eventual size is u nbountded as more objects are

toun ri( aid etail increases. Conmputatiotn can grow expottettiall, if new featuries 11tust be comlpared %01itl

fr itted to a roisn tiutber of thtose already, jiart of the muodel.

In thtis. at least. tlte stoc hastic model is (heteri t stic . For a gixveni xorldr space. the nmdels qiOm

it tird bx thte desired lx el of detail,. rtd is independent of thte intformtatioit it exentuallv comtprises.

( ttirwiatiotlallx. procesite time is bounded and( cnat be forecat a(:ctirlx for a specified s;ensor ;ittu

res'duutiott. I tough ther is xariation front neet to nee-tle numnle (A x xes ini a soti eiix llie is

P)t )-reaul Kettshrq Wte practical litmitatiotts VWorst-uxse lms calt be fotitiula'ted directl\. and

a'Xrseg procssutg load cait be establislted huir mtost scenarios.

I cicli 4 (- sho'-'. the ouceu itoidel alterl a 1till lciullar ta ;it 2 inteettents I lielc :1t,

t hetir localizedf ;urad andtexit the tettinu c area htataxtt ied vi; vttptv In thi, exitiple. lie
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Figure 4.6: Omnnidirectional reconstruction: convergent.

Oiatpnes;c of thle problability peak at thle tarqpt is conditioned mainly by a r. the range uncertaintv.

H ere. the model represents thle point-spread function, or impulse resiponse, of a two-dimiensional

qohastic hackproje(:tion lor this particular sciinning geometry and comoielciatnfuto.

-I lie reqrousqe i no longer propoitional to 1/'r- (see Section 2.5. 1), but shows a ringi .z cavsed 1wv the

tinlte- lenlt ra stilns alongv rile range arcs. 1 he effect is a direct result of convolving the ocani pattern
A i th ~ac h rayi . [This is not a consequence of .ire stochastic formiulation: rather, it is a reflection of

lrra rv.-the sensor itself onrly samples over a finite surface.

Shoh best re i re ac hies ed with scans fronm many look angles, this is impractical (or

ii jo ssibI)1 for rost aepplicatioits1 Figure 4.7 shows, the more plausible case of a platform rrro~ irg

1i-1i .r sit irchi line !raleor, yt "I lrk ied. do%,tiw %ard -look ing seiior. lFre geomietry is sinrila; to that

4 t -11:11~ 1'~r -bid.hip or to,_ed platfoilr aIS it is used t0 oILC o Jc - itbsureItric 50r1\fv Tire

1j hsrdt.trt is intenided to 00%% thle ramp response for tii georretrv

TI he nwlel In Fiinei 1 8 -,how;s the result of a Simtulation uising thle saime paraluwterc troutl tile

onsr eww ti C'urpt hat 6:1 6 (1 2' 'beam piattern ' and g,, is undefined for all r >R (thle

;1d Ir lt . 'in~r igmored) The "15ris at a fixed altitude _180 nowihmroe thle



X1 X2

380 units
120

760 units

Figure 4.7- Down-look reconstruction: scanning geometry.

upper plateau and 760 units above the bottom floor, and samples at a spacing of 4 units. Only the

lower part 800 X 400 pixels) of the model is shown.

Figure 4.) compares the stochastic surface estimate with a simple deterministic estimate and %,ith

the actual surface. A surface profile derived from the model is estimated as the First moment, as

described in section 36. 1,. the deterministic estimate is taken as the locus of all points on the look axis

at thresholded ranges, as described in the previ us example. Figures 4. 10 and 4.1 1 showy a similar

comparison of the impulse responses. In this simulation, the sensor is at an altitude of 780 units above

the floor, and 4630 units above . single point target.

In the two simulations, both estimates are biased because of :he sensor beam pattern. The flat

!K tions are determined correctly, but along the ramp and near the point target a return comes from off

-I,"i I. 11, .,.e'er. the stochastic estimate sho. s less error. since overlapping detection en, e ,lore

incrementallv constraiii target positions. In this simple example. the stochstic estimate gi~ e a
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Figure 4.8: Down-look reconstruction: ramp response.

285

380

Deterministic
Estimate1

Bottom Estimate

5 7) Contour
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Figure 4.9: Ramp responise: surface estiniales.



Figure 4.10: Down-look reconstruction: impulse response.

380

Point Target

460 -_____________ Deterministic

Estimate

540

620 Stochastic
Estimate

700-
Bottom

780~

0
0 100 200 300 400 500 600 700 800 900 1000

Figuire 4. 11: Impulse response: surtice c-limfltes.
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con tinuous biottotil \ki th a 1 roadened "pulse" around dhe target. Other estimators could recognen ~
ranege discontittuit, aid segregate target and bottom This point is discussed brieflv in Chapter 7

Ihe three e\atttpies just i~ett range trout a best-case reconstructin to a 'Aorsi-caw. Wihtev rhe

Cnsar is Able to cx.a tarcOet from inany ditections, int -orntation is nmaximized and the L~Votxrieett

1nt0dei Ippiloaches I poittt estimtate. li Whe ramp simulation, the sucface is at an oblique aittee to thle

look mxi. and therm is an ("xerkap between suiccess,'.e detection ett\elopes at ditteremt ravnq Fil e

intpnlk relponse A" this zeottwtr sluox' M le leant tw'orable LOW. There is onl'. one' ook dircriOtt

and little oxerlap at differettt railtes.

4.2 OPFN-LOOP MODELING

lIt the pt cx on' sectiort the examples are cottrixed to A=s' basic properties of the hackpiojectiot

formiunlatiotn A ihout nmutch r egard to t cal-sot Id considerations. Thte next examples, focus ott mtodelitg a

thtree-dimnsit'onal enx ionttlnt o itli moir realistic constraits. In a tpical simulatiott I nttodl a Ire-

sx'. lingi uttderxsater x ehicle %k'.ith a do-. i-lookvirg sensor. To mtaimtairt a perspectxe of itidepet

nenters anld to axoid it\ bias hru a regularized platform trajectory. pos iionts anid attitudes are generatred

randoml\. but are constrained to lie itt a %olunte aboxe tlte terraitn. '.s dl a directional ax'is fillitng irtside

a doont''.ard-poititing cone

Relief ttaps-egu lar two-dimensional arrays of deptlt-git.e rte sintl .1lator a bask for generatintg

s;erisOt' icm ms, 1 i enre 4. 12 sho'..s a tperspci\e cx'. of a relief ttap used for the ftrst simin ltiotis

16m tee.ilte intent is to model a natural "underwater" terrain. thouch in others a reztljar gleonri

intic d iced F-or all simitu lated cx ettts . a model x ector is genieraited bx' " g roing ' a detect ion en'.elope

iroindl (lite di rectiontal ax is nus ard from the sensor. Specular effects are igtnored and tMe intersection

of the depth map '%kitht any '-oxel on a range surfae increments a counter corresponding to the time axis

ait that raitge . The first counter to exceed a treshiold of "his" or scatrerers is returned as rantge to

target Noise-corruped positioti attitude, and raitge vales constitute a simulated measurement \'ector

passed to rte nlrdelei.

, Inlllhtixow' ix'fl in ll . thesis t'eseat'ch inicorporate a variant of tile Ifi,U0w,'-f'''

iechntii(liie. ' Oiih is extended to three dittettsitts auinentd fly explici consietatiott of positioiitg

attd poititii ertor . and gi'.en a S N depenidetnce otn rainee. "Fite binar'% hoitulation is similar' to that of

Section I , except that the model xecors are:

S P , .



Figure 4.12: Mount St. 1-ie~ens terrain database.

aind the mapping functions iire:

fk f r x I. E

f, X. I * f(a a _ , )

ft aTO + aSkl I0 0 I < 0
a" +0k a 0  a ask I 0~~-' --

I h ', aboe indicate fhat thle normalized scattering strength is implicit in the model, which comprises

ai ,inzle airav of probabilitv valuies. In practice, thle probability valujes are maintained as tirisigried

. :in~ rd ;caled to the range - I < as < + I for combining.

Ilie combiinrg fuinction, . is a variation of tile MYCIN formula [ Shovihli)'. 1 97(1]. except that

(hi! term I Ii 1 [' a,, , ask (see )ection 2.4) is omitted for probabilIi ties with dlifferenrt qigri. rrrv,

f'rici na I raonr for dlifferinrg with tile Moravec-Elfes approach wkas main lY to avoid thle extra MrnrrT V

le(li ii ciien r for Tmai rtaiinrg separate a rravs of Occiipid andl rrpfv probabilities. This -eemed an

3rt i hcia I ii tinrctirirr. ,inrce the two are related to thle same sonar signal hv a threshrold \al tie. Foi like
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Figure 4.13: Terrain modeling simulation with low error.

Figure 4.14: Terrain modeling simulation with high error.
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Figure 4.15: Probability plane: sparse data.

reasons. I omit intermediate steps used by Moravec and Elfes that treat the values asymmetrically

toiavc- [1987a, h] has exolved the approach in several ways and, for example, now uses a Bayesian

to mulation).

Figure 4. 13 shows the result of simulating an active sensor with E,= 3 "P, 'e = I '. R= 1.5,

C .. ( , using a model size 128,128,321. Here, there is no translational error, and moderate

range and pointing error. Measurement noise is simulated by calling a random-number generatot.

-caling the returned value according to the selected uncertainty value, then adding that error to the

exact "measurement" value from which the simulated range return is derived.

The output of the simulation (lower left) bears a faithful resemblance to the original (upper

right). with only a small loss in sharpness because of poor sensor resolution. Figure ,4.14 -hows thle

remult nf a zimilar rim ,kith the same parameters. except c'r !3.3,1!. The unfilteied iendririne

lowrer left) has been degraded significantly by the large horizontal positioning error, eq i\,alent to

abort ± I0- of the terrain's full vertical relief. However, a spatially-filtered version (upper left) shows

that the low-pass representation still corresponds well with the original (right). Experimrentatioi %itlh

different ranges of error verifies a graceful degradation with increasing a.
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Figure 4.16: Proba~bility plane: 60 sonar

Figure 4.17: Probability plane: scanning laser.
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Figure 4.18: Probability plane: convergent.

Planar cross sections through the probability distribution (as(X,yz), for example) show a

"fuzzy" surface boundary, whose thickness depends on error and sensor resolution. The overall effect

on the stochastic surface estimate is similar to that of a three-dimensional low-pass filter, a result that

rna, be anticipated from the recursive formulation. Figure 4.15 shows one such cross section taken

from an early stage of the low-error simulation. Here, the model comprises 1000 events (if we assume

I unit ='I n. then a sonar working at scaled ranges would have been scanning for less than a

minute).

In Figure 4.10, the model is at an intermediate stage of development (10,000 events), and the

surface distribution is more complete. For comparison, Figtre 4.17 shows a n, Ddel at the same stage.

hut a scanning laser is simulated (e,=0). As discussed earlier, the upper region where as=0.5 is

,nknown. hecanse the sensor has not sampled there; the lower region of mid-probabilities is

tittra ,t() h,, because this sensor cannot see beyond the shadow boundaty. It the ;igrial i eie

considered after the strong surface return, then the corresponding volume would be modeled incorrectly

as a low-scattering region. and probably empty. The consequences would be undesirable for a path

plan ner trying to find a route through the mountain's "hollow" interior.
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Figure 4.19: Probability plane: horizontal.

0.5

0

Figure 4.20: Probability profile (generic).
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Figure 4.21: Convergent probability histogram (generic).

In Figure 4.18, the model comprises 32,000 events and has converged to a probability

distribution that changes little if more events are considered. Figure 4.19 shows a horizontal plane

through the convergent model, taken at floor level in the volcanic crater. If we consider a line through

this plane, starting at a model boundary and ending at the center, a probability profile is generated as

in Figure 4.20. The stochastic surface estimate is associated with the peak in the profile and might be

taken as the mode or the first moment. In practice, the profile is often more ragged because of coarse

,oxel sizc and random error, so I use the first moment. The scattering threshold (see Section 3.6.1).

S T , is chosen empirically to compensate for asymmetry in the profile " en an estimate is m ade.

If we consider a generic histogram of probability values for such a convergent model, it appeats

as in Figure 4.21. With no events, the histogram consists of a single impulse at 0,3=0.5. As the

model evokes, peaks begin to form at 0 and I, and sharpen as more information accumulates. The

relative sizes of the peaks depend on the environment and on the choice of reference Irame. For

example, if the vertical origin were fixed far below average surface level. the model would encompass a

large unobservable region and the central mode would (lominate. An environment vith im1ch detail

and surface atca would show a larger peak near as=1. In chapter 7, 1 discuss how such features

might he used to characterize the model and the environment, and to measure convergence.

Figure 4.22 shows another horizontal plane through the model, taken closer to the base of ihe

mountain. The high-probability area is enlarged because the surface slope is closer to heing paiallel
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Figure 4.22: Probability plane: interpolated and bit-clipped.

with the plane. The plane i3 bilinearly interpolated and the image uses a bit-clipped (iterated) color

scale to help make two observations. First, the continuous fringes between high- and low-probability

areas indicate a high probability gradient, which makes a distinction between tile two easier to make

computationally. Second, the fringe continuity, at a scale much finer than the coarse voxel size

(compare with Figure 4.19), suggests that surface estimates may be valid (certainly they can be made)

at subvoxel resolution.

The artificial relief map shown in Figure 4.23 introduces a regular geometry so modeling effects

cain be seen more readily. Figure 4.24 shows the r-sult of simulating a towed mapping platform with a

downward-looking sensor. The track spacing is 4-units, range measurements are taken at 4-unit

interals, and the platform maintains a (smoothed) altitude of about 20 units over the bottom. The

modeling parameters are 0 1,= 1.5'. = 1 . a,= 1.5. a,= JO. model size {256.256.64}. Results

are good, with little loss in fidelity other than high-frequency detail. Figure 4.25 show,s a -econd

simtlation with the same configuration, except e,= 6 ' and a,, = I, )j. The main effect here is

caused hy the larger beam width. A comparison with Figure 4.23 shows that the features hle been

broadened horizontally, similar to the impulse response of Figure 4.10.
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Figure 4.23: Lowerrer, e vie ofd seasc eipe mode
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Figure 4.25: Moderate-error, 12 ° -beamwidth seascape model.

4.3 CLOSING THE LOOP

The simulations just described, and the real data sets treated in Chapters 5 and 6. all investigate

model formation and evolution. This thesis focuses on that aspect, since It lays a foundation for

higher-level processes that extract information from a model. I have alluded to such uses as obstacle

avoidance and path planning, but see an important application in terrain-relative (geophysical)

navigation. In this section, I describe the results of two series of simulations that use a stochastic

model directly for positioning. The simulations were conducted early in this thesis research to verify

that such an approach is feasible.

The first simulation models a free-swimming vehicle that moves about the artificial seascape of

the ..tt two examples. A a basi for fixing it5 position, it t.wes a prior prnbabilitv model fim the

second simulation, where 0h=6 ° and ,= J1,1,1 ). The free-swimming vehicle follokks the same 1iaOk

as the towed vehicle and samples at the same horizontal spacing, but flies at a (smoothed) altitude of

ahout 10 units. Here, though, the sensor scans horizontally at angular intervals of 6', with 11 = 1.5'.

ao = I °, and aR = 1.5 units.
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For each circular scan, a local model. Lk. n. is constructed ftorn events in the scan: the

i -hscripts indicate that the local model comprises 'i e.ents (n=60) starting Aith the kth . The events are

not combined. but maintained as a list of ,oxels. where .I is the number of voxels in the list. To

estimate the ehicle ; position after each scan, the local model is correlated with tile global model over

a rangce of ±2 units such that:

M-1
C'',i = % i.v ja xy, >.S. -2 < i~J _ +2

Ax =i.j, wxhere C. = a[C~ I

To calculate the sum at each offset (ij). the list is traversed and. if a, >0.5 tin other v-ords. it

corresponds to a probable target), the probability product is accumulated: otherwise, the next voxel in

the list is considered. The estimated position correction, Ax. is taken as the offset at which the sun of

the products is greatest.

For this sirnulation. the scan correlations. CQ.m are shown in Figure 4.26. vhere the color

table is gi,,en in scaled integer units (0<0. as<255)). A comparison with Figure 4.27 shows that the

highest correlations are associated with areas of lower relief. There are no surprises here-it shows

onl. that more targets are detected while the vehicle flies at greater depths. As the vehicle moes over

the higher-relief features, there are fewer surrounding objects at that scan altitude.

Figure 4.28 shows the absolute position estimation error, Ax!. for the same run. There is less

dependence oil the terrain, %khich suggests that only a few returns are needed to get reasonable position

fixes. Howe\er. there is a trend toward higher error along the edges of the model and in the corners.

At these locations, there are fewer targets and they generally lie in a narrow sector toward the center.

The geometry is less favor:1ble than for an omnidirectional target distribution, and such results may be

anticipated. In the central quadrant (64 < x < 191). the root-mean-square (rrns) error is computed as

1.6 units. If 'e use the scale I unit = 20 cm. then the rms positioning accuracy is about 30 cm for a

region 50 m on a side.

A recond cerie- of zimilatinnq ,,ez the -znme vehicle, model. ind cannin2 paramneterz Iin-liding

noise). but generates a random walk in the .. v. and z- directions. Starting at the center ol the model,

x = :,128.128.32; . a scan is taken, a position difference is calculated using tile rame corretiom

technique. and the perceied location is estimated as:
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Fivure 4.26: Scan correlations for stochastic positioning.

Figure 4.27: Depth map of artificial seascape.

96-



Figure 4.28: Navigation error for stochastic positioning.

M-1
C =ik Z 'eP.(Xk-I +V,yk-4±j)'s(Xy), a P >0.5, -4 < ij < +4

6Xk:= {i.j} where Ck - max[{Cijk} ]

Xk AXk + Xk. I

X8k - fl'(0W) + Xak.l

where: xk = perceived position

Xak = actual position

a w  - 14,4, 1

The vehicle is assumed to have a sensor for measuring depth, and only horizontal position

estimnte- are considered. The random positioning offset-, are generated is described earlier for noise.

After each scan, the new position estimate is simply the sum of the last estimate and the estimated

correction. Actual positions are used to generate the scan measurements, and are unknown to the

correlator and estimator. For the parameters above, the simulation runs for several hours with absolute

position error less than 9 units. With more noise or larger a w . the position error increases x,,ithout

hound after a few iterations (the simulation stops if Xk exceeds the model boundary).
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As in the previous example, performance is sensitive to noise and other uncertainty, and depends

on the terrain itself. This simulation is intenued to show that such terrain-relative positioning is

plausible using the stochastic model directly. However. in one sense this is a worst-case ;cenario.

since a real svstem would likely be equipped with inertial or velocity sensors, and would have a model

of platform dynamics to help estimate position changes. In another sense, it is an ideal case because a

prior (stochastic) model is available. However. a concurrent approach to modeling and positioning can

be reformulated with the correlation technique described above. I will describe an unimplemented

approach that uses a variation of J]ding as it is applied to the HILARE robot [Giralt et al.. 1979].

As before, the local model, Lk.n, comprises a list of the n most recent events. The global model.

Sk 1. has not yet been updated by the newer events Pk, Ik+t ....... Pk+n-,t" At time %+,, the next

event is added to the local model, and the position correction 6Xk+n is estimated. The new correction

is propagated backward through L. and corresponding estimates are updated as:

AXtk-= Kj.Xk -r- (I-Kj)AXk 4 ). 0 <j n+l

K 
jn+l

The correction progressively diminishes as it approaches tk. reflecting the cumulative nature of

dead-reckoning error. Here I use a simple linear fading. but more sophisticated approaches are

conceivable (a Kalman filter, perhaps). As described, the process is a recursive estimator. and 6X'k is

refined over n iterations. As a final step. Pk is removed from L and merged with the global model. A

brief discussion on starting with a blank slate is reserved for Chapter 7.

4.4 SUMMARY OF IMPORTANT POINTS

In this chapter I have presented the results of several computer simulations, most of which were

conducted in the early' stages of thesis research. My intent has been to show (I) basic properties of

stochastic backprojection: (2) the method is computational tractable: (3) an appropriate fidelit-Y is

realizable: and (4) stochastic modeling establishes an appropriate foundation for higher-level processes.

Some important points mentioned are:

I Deterministic estimates may lead to erroneous assertions about the world "xhen threshold, are

applied to measurements without consideration to a sensor model

2 Other information made explicit in the model-enptiness and ignorance. for e\anple-ca bie

used directly by higher-level processes.
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.Anak tical and teat, re- or object-based approaches may lead to models of unhounded size. as

incieasing detail is added.

\ deterministic model .iZC and processilg load allo% comptutational hard\, are and timing

con-idlations to lie tlorecast tor l application,

More look a ges ,enerall\ mean morc inormation. and improced modeling results.

WVith enolltl e' ,nts. models conxerge to a low%-pass. fuzzy" suftace distribution. \.lch

degrades gracetutlv as more uncetainitv is introduced.

Su.tace estimates ot suboxel resolution can be extracted, and may ofler a path , vreatcr

Otticienc\ b\ al lo -.ing a coarser spatial partitionling.

S. lerrain-relatixe positioning can be implemented directIv ,.\ith a stochastic model, and mav lie

vxte..Jed to conu rrent modeling and positioning applications.
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Chapter 5

APPLICATION DATA SETS

The simulations described in the last chapter were helpful in developing a computational

framework and in iocusing research efforts on important issues. However, an important test is the

processing of real-world information, which usually does not fit all our simulated preconceptions. In

this chapter. I describe four applications tested on data acquired in tile field. With one exception. these

are from large-area mapping systems.

. MULTIBEAM BATHYMETRIC: SEA BEAM

Sea Beam is a 12-kHz bathvmetric profiling system that generates a swath map of the ocean floor

using sonar arrays mounted to a ship's hull (Renard and Allenou, 1979: Farr, 1980]. Tile transmitting

array generates a pitch-stabilized beam pattern of 540 across-track and 2-2/3 ° along-track. The

receiving array forms 16 beams, uncompensated for motion, at 2-2/3o intervals, each with a beam

pattern of 200 along the track and 2-2/3' across the track. The composite beam patterns, then, are

roughly 2-2/3" by 2-213' , evenly spaced over a total field of view 200 athwartships (see Figure 5.1),

this produces an effective swath width about 73T of water depth.

The echo-processing electronics comprise 16 receivers, corresponding to the ensemble of

receiving beams. For each bean, a bottom-tracking gate determines the interv,)l mer \hich the

received signal is digitized (to a resolution of about 2.5 m of slant range). The slant range is

determined from the center of mass of all signal components above a predetermined threshold lexel.

For each valid detected depth, simple geometry i. applied to generate a slant-range corrected depth

referenced to 1500 mi/s speed of sound) and a track offset corrected for refraction and nominal speed

of sound. Tile depth/offset values are recorded on magnetic tape and plotted onl a strip-chart recorder.
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Figure 5.1: Sea Beam profiling geometry.

De Mfousticr anid K~c'iti-ock 1t9861 discuss several depth artifacts Introduced by the Sea Beam processing

that are related to bottom tracking, gating, and thresholding.

T o test the binary model on real-world data, a Sea Beamn tape with merged navigatiotiwis

acquired from the NECOR facility at thle University of Rhode Island, hy courtesy of D~r. Robert Emibley

of NOAA\ [l-mblev et al., 1 9881. The tape contains raw Sea Beamn data without multi-ping axeraging.

u-tialv performed before thle data are gridded in postprocessing applications. The ship's navigation

data are deriv-ed from intermittent Transit satellite Fixes supplemented by long periods of (lead

reckonino. 1The navigaition had not bern corrected with track-crn-iiig correkition. irmitv ap1plicd

before gridding to improve results. Positioning errors onl the order of several hundred mneters are

com mon in the data.

.7. generate a model, the data are read sequentially as though the processing is beitig carried ott

in real time aboard ship. For each ping cycle. depth and track offset are uised to generate a Omant
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Figure 5.2: Sea Beam bathymetric tracks.

range, assumned to lie on the axis of each corresponding beam. Because the depth/offset pails ale

interpolated and refraction-corrected, an effective cross-track look angle is also calculated for each

"beam." Ship's heading and position are read from the file and augmented by the calculated slant

ranges and look angles to constitute a maximum of 15 event vectors (the number depends on the xalid

data pairs on the tape). The vectors and mapping functions are the same as in the binary modeling

simulation ot bection 4.2, except that:

fil = Ka,, + (I -Ko)OSk.l 0<KP <I

where: Ko = ilC, Ccnnfrtt

The formulation given here is an early (relative to thesis research) approach to modeling as a

purel' recitrive filter. It w.as motivatd 1w nhiervations of large regi-tratinn crroi,r in the en eim

data, and accommodates the error Il controlling the "memory" in the model. Higher ailties for K.

take advantage of the relative accuracy in dead-reckoned navigation among neighlboring ping cycles. so

the Oshape and crispness of bottom features ire preserved. Lower valties tend to blur tite model and. in

effect, result in a three-dimensional low-pass filtering of the estimated surface. This is consistent with

the global uncertainty introduced hv navigation error.
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Figure 5.3: Sea Beamn high-error tracks.

Figure 5.2 shows a section of the surface derived from two short tracks, with about a 1 .9 kml

,;%%tdi %%idth at these depths (2 200-2800 inl). The area is 4-kmi on a side and part of the Ualapagoi Rift.

a citigtal spreadilng zone characterized by the terrain shown here. The upperI track parallclq a rectollic

idce. and thle lo.%er track diagonally crosses a second ridge, separated fromi thle first b% ai utt \ alley.
file nodehog paramieters are: E),,=3'. a= I . aR- .5'.oxels, a, :44,, K,, 1) 5 and

the model size is I 28 I 28.32 (thle model is confinred to a region encompassinge the bottoml. "o tlie

fte e "'1u rn is not considered) . Thle coarse %oxel size corresponds to a resoltion) (4 ihokit 301

ill i all three coordinrates,- but depth estimates of suh-\oxel precision arc extracted

Figure 5.3 demonstrates thle registration error that appears in thie uncorrected navigation data. Inr

this model. all track segments conic from the samre day's survey. Figure 5.4 shows thle result of

model ing wvith data collected over a 3-week period (not all at this location). The data irnclude sex eral

dai%- of random swinvingp onl station, since a sequence of ALVIN (lvswas conduicted at the site. A\ll

data are considered, not just thie straight, even-velocity tracks normally culled arrc correlated to make a

gond lit. The low-pass nature of thle surface estimate is lplainlv evident as the result of uncl mmlil ug mm cr

redundant data wkith large positioning error (K, =0.20).
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Figure 5.4: Sea Beamn bathymetric surface.

Ill all the examples just described, a "real-time" display is generated concurrently %%ioh the

incremental modeling. The display is not just written over by new data, as, for Sea iDeamn qhiphmd

plottinv.. For ench ping cycle, the beams ate mrodeled and backpirojected. and any nmodified %~oClS i c

flagged For tho-ze oxeks a new surface estimate is extracted and filtred locally. Ind thle di- Ikl i~z

upd)(ated onl,. if the chan -ze propagates that far. In all cases, nmodeling and display is accompishled it

peeds greater thanl of' equal to ieal -time data acquisition rates, uising a 10-i lz 690)20 .oikstatioin itli

Weitek floating-point chip,;

In fact, real-time displays are the most computationally intensive process with the cnn cut

hard ware con figuration. fIn a "batch" mode with no display, modeling alone is carried oit at about six

limes, the dara acquisition rate: modeling %%ith a real-time color-contour display at three times, tire (la

r ite: mird modelinr .kilh a three-dimensional shaded plerspcctive di'zplay at a rate slightl lathm ra el

1111Cn Il I Ih latI It er (I-(-. th Is .- ,IalI effet is; thatn of 'paint Iing'' a thIIIe-d Iif t' ition al I er a pe fs iII( Ite ,i

rltuu'e libo it, trar.k hieser pertoiirtance character'izatiuns aic offered only ;is quralitatm a'srieit

1,) shiv- tIre- pro( L-- i- feasible for reA il-tiile shipboar d process inJg A ith mJodest (M IurtuutItiu'n;rl I~t

I hre mordcliiig and~ dislkiv rourtitres are ti0t Qotiliri7Cd lor- per fot-IrIan(C. aid anl net Card~ ffiL iciu% uria \
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Figure 5.5: Sea MARC I scanning geometry.

5.2 TOWED SIDESCAN: SEA MARC I

Sea MARC I is a relatively long-range 27/30 kHz (port and starboard) sidescan sonar that creates

an intensity map of the ocean floor [Kosalos and Chayes, 1983]. The system uses a linear array to

generate a beam pattern of 1.70 horizontally and 50' vertically (refer to Figure 5.5). As the sensor is

towed near the bottom, tie acoustic signal reflected back from the seafloor is amplified, demodulated.

filtered, and digitized. Sea MARC I uses a variable-increment sampling scheme that incorporates a

qlant-range correction hased on altitude over tie hottom. On hoard ship. the data are recordeff on

magnetic tape and an image is created line-by-line on a gray-scale paper recoider. Each line

represents the one-dimensional signals received back from outgoing pulses on each side of the towved

sonar fish.
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Figures 5.o-5. , are intensity maps generated from Sea IMARC I data contributed by the Lamont-

l)ohertx Ciecological ()bser\atorv (LDGO). courtesv of Drs. Kim Kastens and Bill Rvan [Kastens ci al..

10801 Tl'_se ,re 5+kn-swath-width records with a 2.5-rn cross-track resolution. The terrain is t, pical

M ,hec rustal t-preading. fracturing, and volcanic activity of the Clipperton Transform Zone in the

castcrn Pacific. The mergt" navigation records are derived ftrom LDGO processing, which dia%%s from

-ateflite fixes, dead reckoning. and short-baseline fish tracking with depth-contour matching. The
naxigation is interpolated with cubic splines to generate a smooth, finished track. Heading and altitude

are meisured by Sea MARC sensors for each ping cycle, which occur at about 3-s intervals.

F!:ure 5.b shows a linear display of unprocessed data. similar to the gray-scale paper recording
produced aboard ship. The black center stripe in tle image is a 200-m data gap windowed by the

system. Figure 5.7 shows a map linearly compressed by averaging to a scale approximating the true

geometry. roughly the equivalent of a speed-corrected paper recording.

In reality. though. the fish d,,s not follow a straight, constant-speed track that suits the linear

recorder. Figure 5.8 is a map created by a postprocessing technique that corrects each line for position
and heading using a grid of averaged intensity bins. In these first three images. the wide. dark and
light bands along the track are caused by the sonar's fixed TVG. The narrow, dark lines across the

track are dropouts" where there are missing or corrupted data. probably caused by yawing motions of

the fish.

Figure 5.9 shows the result of two-dimensional backprojection applied to the data in a sequential.

real-time manner. The modeling vectors are as given in Section 3.6.2, except that ya, rate is

unavailable and only one heading measurement is recorded for each event. The mapping functions are

the same also, except that:

6= gN(k)hNOj.k)Sjk

k = Kt ak+(l-K)&kl, k O, O<K& < I

&0O= 8.o

j-0

',pre: j = raige index

J = number of range bins

K= filter constant
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Figure 5.6: Sea MARC 1: raw linear map.

Figure 5.7: Sea MARC 1: averaged linear map.
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Figure 5.8: Sea MARC 1: grid-averaged map.

Figure 5.9: Sea MARC 1: backprojected and corrected map.
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and E is computed as in Section 4.2. The striping gain, gN, is based on the idea of yaw compensation

developed in Section 3.6.2. However, since heading is not measured for the entire event, the

correction is computed with the average line intensity. The rationale is that for local neighborhoods the

average intensity should vary slowly and smoothly.

For the model in Figure 5.9, K&,=0.05 and the other modeling parameters are e=2' . OR=2.5

pixels. ax, .0 pixels, K6 - 0.05. and the model size is 11152.900) pixels. Again, the model is

mapped to the frame buffer for convenience. In comparison with Figure 5.8. it is apparent that gN is

effective in reducing the striping noise, and hN enhances the visual information by compensating for

the fixed TVG. As an overall result, the image quality is improved over simple intensity averaging.

An important consideration, though, is the incremental nature of the process. Similar to the Sea

Beam example, the model is grown along the track, on a line-by-line basis, as though processing is

being conducted in real time aboard ship. Though such smoothed navigation was not available at the

time the data were collected, near-real-time navigation is feasible in many of today's applications.

Processing time at this resolution is about eight times the data acquisition rate. including a real-time

display.

A preferred approach is to start with the raw digitized signal (no slant-range correction). more

complete attitude information with a higher update rate, and process three-dimensionally (discussed in

Chapter 6). Rather than try to extract all the assumptions built into the data set as it was received

(altitude, slant range), I adopted a minimal two-dimensional formulation. The obvious advantage.

though. is increased processing speed at a higher resolution. As it is. the method is suitable for real-

time model building and display aboard ship, an attractive option for search, survey, and geological

mapping and interpretation.

5.3 TOWED SIDESCAN: SEA MARC II

Sea MARC II also is a towed sidescan sonar that evolved from Sea MARC I, and the two share

many subsystem components [Blackington et al.. 1983: Hussong and Fryer. 19831. However. Sea

MARC I1 is a dual-receiver sonar, and uses the phise angle between the rignail fiom t % ohlel -

spaced transducers to estimate bathymetric relief. In practice, the system is towed over a relatively flat

bottom, and statistics are compiled that allow a conversion from electrical angle to look angle. With

this technique. a ray-bending correction is automatically included as part of the lookup-table

conversion.
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tilike 1ie deeOp-to.d Sea NIARC I. the system operates near tIe surface. typicallv just below

the thermocline at depths of about 100 in. The sonar also uses lower frequencies t ll,'12 kHz) and can

nailp ., ;% ths up it) 10 kill ' ide ,.ith a cross-track resolution of 5 in- The beam pattern is -haped hy a

linela ai" a% ,1 ' .t produces an anular ;pread oft 2' horizontally and 40' Nerticallv. The received signal

i-, iocessed and digitized , ith a built-in slant-range correction as for S"a MARC I.

On board ship. the phase angles are accumulated in 75-m range bins (for the 10-ki swath

,idth . and a single phase estinate is taken from the distribution. The slant range and phase lookup

aire used to geterate depthoffset pairs. %kith a bathvmetric accuracy about 3% of water depth. The raw

amplitude and phase data are recorded on magnetic tape. along with the computed depth'offset pairs.

Shipboard presentation uses linear paper recorders for gray-scale sidescan intensity and for color range-

bin plots of hathvmetrv.

Figures 5. 10-5. 13 show intensity and bathymetric maps generated from backprojected Sea MARC

II models. T,,e data are from the Siqueiros Transform in the eastern Pacific. and cover a region abont

200 km in east-west extent. The Sea MARC II was operated by the Hawaii Institute of Geophysics

(HIG). and the data were supplied by courtesy of Dr. Dan Fornari of the Lamont-Dohertv Geological

Observatory and Dr. Dave Gallo of the Woods Hole Oceanographic Institution. Ship's navigation is

derived from GPS. Transit. and dead reckoning. The position fixes were manually adjusted aLard

ship. but are reported to be highly consistent.

5.3.1 Intensity Model

With a few exceptions, the intensity modeling is similar to that of Sea MARC I: (I) A yaw

correction, gN is not implemented: however, the data are of good quality and final results do not suffer

appreciably. (2) The cross-track normalization. hN. is computed as a fixed value (for each range bin)

from a preliminary pass through all data. (3) The beam pattern is modeled with uniform intensity over

a narrower angular extent: in effect, this is similar to a directivity factor [Urick. 19751. (4) Scaled-

integer processing is used rather than a more precise floating-point implementation. For the larger-

scale models, the effect is negligible: at higher resolution, though, aliasing and round-off errors

degrade results.

A large-scale model of the entire survey area is shown in Figure 5.10. covering 2* of longittide

and I of latitude (about 222 km by 172 kin). The representation is not a nosaic. in the iou;al

sense, because the modeling is accomplished continuously and incrementally. Figure 5.12 shows a

higher-resolution segment from the southeast corner of the survey area. covering 40' of longitude and
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Figure 5.10: Sea MARC IT: sidescan intensity (large-scale).

Figure 5.11. Sea MARC 11. bathyrnetry (large-scale).



Figure 5.12: Sea MARC 11: sidescan intensity (medium-scale).

Figure 5.13: Sea MARC 11: bathymetry (medium-scale).
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Figure 5.14: Sea MARC II: sidescan intensity (small-scale).

30' of latitude (about 74 km by 56 kin). Note that the continuity of linear features is preserved

through the turns.

Figure 5.14 shows a higher-resolution model segment from the center of the survey area.

covering 20' of longitude and 15' of latitude (about 37 km by 28 kin). As for Sea MARC I. the black

center stripe is gated by the system. The shorter strips across the track are data gaps between the

original tapes. In this survey there is about 5% track overlap on average. No special techniques are

used in these overlapped areas; in effect, they show an average intensity from opposing look angles.

Geometric distortion from the planar-bottom assumption also causes misregistration of features that

have any significant relief.

Processing time at the resolution of Figure 5.10 is just under one hour (for about 3, das of

,I-I.ev dfmti) At the ;cnle irked for Figure 5. 12 (one third that of Figure 5. 10. or nine tinles a nanv

pixels) processing takes about I 1/2 hours for the entire data set. The increase in processing time is not

linear with resolution because there is significant overhead in file access and initialization for each

event. The relative speedup over Sea MARC I processing is partly because of the difference in data

acquisition rates (about 3:1). The remainder is accounted for by the simplified Sea MARC 11

implementation.
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5.3.2 Bathvmetric Model

The bathymetric processing uses HIG-generated depthioffset values. These are interpolated to a

resolution that matched the sidescan intensity data. and processed as a "two-dimensU,,at"' event.

Figures 5.1 1 and 5.13 show examples of bathymetric maps that correspond to the first two intensity

models. In Figure 5.13. the high-relief feature in the upper left is an undersea volcano (the crater is

just kisible as a small "dimple" near the center). Between the two lower tracks, there is a noisy strip

where the, overlap. This is a consistent defect in the port-side data (apparent also in other locations)

where the depth is underestimated at limiting ranges. This artifact is not introduced by the modeling

implementation: it is present on the raw data tapes.

A preferred approach to modeling Sea MARC II events is to start A;th the r: phase data and

process it three dimensionally. Phase error can be modeled as a probability distribution over a range

surface bounded by the vertical beam pattern. However, the real potential for the Sea MARC II system

comes from the joint availability of intensity and bathymetric information. With the bottom surface

shape defined, the intensity map can be corrected geometrically. More sophisticated approaches are

nosihie a I discuss in the next chapter.

5.4 PROFILE SCANNING SONAR: MESOTECH

The most thorough modeling treatment to date was undertaken as part of a USS Monitor survey

conducted bv NOAA and the U.S. Navyv [Arnold ei al., 1988]. A downward-looking, mechanically-

scanned profiling sonar (Mesotech 971) was mounted on the Navy's Deep Drone-a free-swimming

ROV-which was fitted with a good quality, attitude measurement package (see Figure 5.15). In profile

mode, the 675 kHz, 1.5°-beam-width sonar returned a thresholded range along with scan position.

Most surveys were conducted using the 5-m range scale, and occasionally 10-in. A real-time processor

collected data from the sonar, from an external long-baseline system. and from the attitude package.

The measurements were filtered and buffered, then passed to a separate processor for modeling and

display.

From statistics collected by the survey contractor, the positioning accuracy of the naxigation

system was estimated as 0.5 m (three standard deviations) with the vehicle in motion. In practice,

though. there was acoustic shadowing by the wreck, and self-shadowing at the responder location on

the vehicle. This resulted in frequent. long periods without navigation (up to 26 s). and overall

accuracy was degraded. Depth measurements are from a pressure transducer with about a 5-cm

resolution. To compensate for tidal variations (about I mn), the vehicle was positioned on the bottom at
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Figure 5.15: Deep Drone profiling geometry.

the same location every hour, and an average depth was calculated for a -min interval. Corrections

are interpolated between readings and applied to the pressure measurement.

A discrete, steady-state Kalman filter was used to estimate position and attitude for real-time

proce-ing. Though mnoothing can produce better resiilts, all post-crii.se modeling iises the tatile

technique to simulate real-time performance. Since a model of the vehicle dynamics was unaailable.

the simple filter uses a constant velocity assumption for all parameters. This is reasonable for heading

and for vehicle translations since the survey consists mainly of straight-line tracks. ttowever, for-

r-,i!!-!ory motions in pitch and roll. there is some overshoot in the estimates.
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Figure 5.16: Depth map of USS Monitor. transverse tracks.

The binary formulation is the same as that given in Section 3.6.1. except that the beam pattern is

modeled as the simple cone of Section 4.2. The modeling parameters are: E),,--2.5' , a6 =0.7'. aR 2

cm, a =120.20.8, cm. R,,,,,,=10 m. and the model size is {512,380.75}. In this model, the Noxel

edge size is abouit 14 cm for the survey area considered (70 m by 52 im). To produce a good

representation of the wreck, estimates for horizontal positioning error, cr, are relaxed to tile \alues

given above, so that Ec =7 4.4'

Figure 5.16 shows a depth map from a model built with transverse survey lines, running

diagonally northeast by southwest. The zigzag pattern is caused by the cross-track sonar scans as the

ehicle moves along each line. A similar model, built from a longitudinal survey, is snownt in Figure

5 17 (in these two figures a, = 170.70,8 cm and ec 7.20' all other models use the lower %allies given

above). A composite model, built from the transverse survey and two separate longitudinal surveys, is

h in Figure 5. IS. This model is similar to the one produced aboard ship at the wreck site.

In l igume 5.19. tile composite map is extrapolated with an iterative dilation algrithm ' ,'' tli' tcIk

valjes are jusl the a~erage of their neighbors). Noisy patches over and around the wreck are mainly

calfsed hv tile abundant schools of fish that inhabit the "artificial reef" (swinm bladdere le good olnar

reflectnrs). To produce tile image in Figure 5.20, the extrapolated map is segmented into the %teck
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Figure 5.17: Depth map of USS Moniior. longitudinal tracks.

Figure 5.18: Depth map of USS Moitor. cornposi~e tricks.
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Figure 5.19: Depth miap of LASS Monitor extrapolated.

Figure 5.20: Depth maip of (155Moaitr- filtered and scaled.
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Figure 5.21: USS A !ito. Photo mosaic of wreck site.

iI

Figure 5.22: U5A5 Mf or Transverse section thioiigh turrel
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Figure 5.23: Perspective view of USS Monitor from the east.

and seafloor using a depth threshold: suspected fish noise is removed with localized median filters: and

the two segments are filtered with a convolution mask before being remerged.

Unlike the modeling examples in previous secthons, there is some "ground-truti" information for

the Monitor survey (other comparisons are given in Section 6.6). Figure 5 22 shows a cross section

through the Monitor' hull taken from the original drawings [Peterkin, 1985]. Notable features are the

gun turret, the flat bottom, the sloping bottom, and the armor belt-a massive. 3-ft-thick structure

around the periphery, Figure 5.21 is a photo mosaic of the wreck site from a 1974 surxev (courtesy of

NOAA, U5 Monitor Marine Sanctuary Program).

The ship-capsized and sunk in a storm-is lying upside down with the broken stern quarter

resting on the gun turret (hemisphere, upper right: the bow is to the west). ' .om corrosion and

probable depth charging during World War II, much of the structure is deteriorated. Seen in Figures

5.20 and 5.21 . the hand along the northern perimeter is the armor belt. which retains t share thllgh

most parts of the hull have collapsed below it. The south side of the wreck is partly buried in the

sand: prevailing currents are from the southwest, and an associated sand bar-with scouring around

bow and stern---.can be identified in the sonar maps.
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The large, smooth patch in the aft section is a remaining portion of the vessel's flat bottom:

pieces of the sloping bottom that connect the armor belt can also be seen. Just forward of midships are

several patches in the wreck at tie same leel as the bottom. These can be seen in the depth maps. but

are not identifiable in the photo mosaic. Details of about 20 cm are also recognizable in the sonar

models, such as the skeg and propeller shaft (linear features. lower right). Though the poor naigation

should preclude such detail, the redundant information in overlapping events enhances the resolution

and accuracy of the model

Figure 5.23 shows a perspective view from the east created from the model of Figure 5.20. This

illustrates the drawbacks of the simple technique used to extract a depth map from the three-

dimensional probability model. Though the armor belt appears to be contiguous to the bottom (right

side of image). it is supported by the turret, and separated from the seafloor by about two meters.

Similarly, the skeg and propeller shaft do not appear as distinct three-dimensional features. though

cross sections through the probability distribution show that their shapes are preserved. I discuss this

problem briefly in Chapter 7.

5.5 SUMMARY OF IMPORTANT POINTS

In this chapter I have shown that stochastic modeling can be applied to real sonar data sets with

good results. Despite the limitations of noise and positioning inaccuracy, the incremental,

backprojected models produce deterministic maps comparable to those created with traditional methods.

Some important points that have been raised are:

Though postprocessing techniques-which can invert all data-should produce the highest

fidelity. incremental methods can approach that level of quality in many applications. Where

real-time performance is needed, the tradeoff can be acceptable.

Stochastic modeling is computationally tractable over different scales of range and resolution.

and the performance and quality of results is appropriate to the applications considered in this

chapter,

Processing efficiency is such that the approach is realistic for practical. cost-effective field

systems.

Simple sensor models can produce acceptable results without the performance degradation of

more sophisticated representations.
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- In the context of stochastic modeling. large positioning error has the effect of a low-paiss Filter.

F~or large-scale mapping applications, the limiting parameter- is registration.

- III the production of seafloor inltensity models, the use of sidescan am plitude data alone

ntroduces geometric and iadiomietric distortion.

- For fulfk three-dimensional modeling, a better approach to feature estimation is needed.
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Chapter 6

MULTISENSOR MODELING

The two previous chapters treat the modeling of a single environmental feature-surface shape or

acoustic scattering intensity. These are multidimensional models in the sense that they are characterized

by spatial distributions over two or three directions. If we consider model evolution, or allow for a

dynamic environment, they might be categorized as four-dimensional representations. They are

1ILtisensor models because they comprise information from navigation systems and attitude

measurements, and from a primary sensor, such as sonar.

In this chapter. I discuss more sophisticated models derived from two or more primary sensors.

The first section presents some fundamental issues as a basis for elaboration. Following that is a brief

overview of current techniques, where I begin to focus on a specific problem-using shape and

intensity information to model surface scattering. The next three sections give a brief overview of

seafloor backscattering in the undersea acoustic domain, and a discussion of its ramifications in

sidescan sonar modeling. With that as background. I present an approach to combining Sea Beam

bathymetry with Sea MARC I intensity data. The last section summarizes the important points raised

in this chapter.

6.1 ISSUES

In the first chapter, I motivated the discussion of an approach to multisensor modeling with a

general statement of the limitations of individual sensors. To be more specific. multiple sensors are

needed mainly because: (1) many features must be characterized to more fully understand an

environment; (2) different sensors have practical limitations-in range and resolution, for example: (3)

similar features, detected with different sensing modalities. may be characterized more accurately with

redundant information; and (4) sensors do not always measure distinct physical properties.
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First, a simple characterization, such as by surface shape alone. may not suffice in many

undertakings. An AUV may need more complete information about texture, reflectance, color.

hardness, and so on to adequately discriminate among different objects or regions. Scientists also need

more complete descriptions to understand subsea processes. For example. a study of seafloor spreading

centers could he enhanced with information about temperature, optical transmissivitv. and chemical

constitution of the overlying water mass, as well as the shape and composition of the bottom surface (or

subsurface). Such comprehensive description exceeds the capabilities of single-sensor surveys.

Second. there is often a tradeoff among different sensory capabilities. Video or still photography

can supply detailed information about the seafloor, often enough to visually study the structure and

distribution of geological or biological features. For fine-scale topography, a scanning laser can survey

more quickly and at a higher resolution than a scanning sonar. For longer ranges, acoustic methods

provide the only real alternative. Here also, different sonars offer competing options in range.

resolution, speed. and signal analysis (sidescan intensity versus bathymetric profile, for example).

Third. in much of this thesis I stress the importance of redundant information in enhancing the

accuracy and certainty of a model. Redundancy can also be derived from different sensing modalities.

To determine surface shape. for example. data may be integrated from a sonar, a laser rangefinder.

stereo photography, or even the touch of a manipulator. However, there is a danger here of confusing

apples with oranges. For example. considei a rocky bottom with a layer of soft mud. all overgrown

with a thick grass or algae. A laser or camera might detect the outer surface of the plants: to a high-

frequency sonar, these would be transparent. but the sound might not penetrate deeply into the mud:

depending on the sensitivity of its touch sensor, a probe on the arm could pass through to the rock

before anything is detected. In such a scenario, the optical. acoustical, and tactile surfaces do not

coincide: a single surface representation would be inaccurate and misleading.

Fourth. a camera is a good example of a device that can characterize surface features only

indirectly. The optical intensity measured at the sensor is a function of the surface reflectance. of the

surface normals with respect to the camera, and of the lighting power and geometry. Even with a

perfect sensor model, it is impossible to deduce any one of these parameters without prior knowledge or

simplifying assumptions about the others. To extract three-dimensional features from two-dimensional

imaces. ,haPe-frnm-qhading technique's fallrd ard frntv'n, 1Q921 require a know'n camern and

lighting geometry, and assume a uniform surface albedo (or impose it with a can of spray paint). Even

then. lateral dimensions are only specified relative to an unknown distance along the look axis. When

complemented with laser range information, though, more complete and more accurate information can

be acquired from the two sensors. and with less effort than for an exhaustive analysis of the camera

data alone.
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The first three issues have been addressed earlier. Where the feature information is distinct and

complementary (apples and oranges), it can be maintained as a stochastic feature vector, with different

features idin idually or jointly accessible to higher-level processes (Chapter 7 has other discussion of

multidimensional representations). Redundant multisensory information (small apples and large apples)

can be combined in the same model if attention is paid to accuracy and relative certainty: as I have

shown with computer simulations and real data sets, the modeling approach developed in this thesis is

largely independent of scale and resolution.

In the example above, where the detected surfaces may be inconsistent (red and green apples?).

the best approach is less easily defined. The real issue is: at what level of representation should the

different data be combined? The answer is: it depends on the particular sensors, environment, and

application. For most cases, though, I contend that the preferred approach is to combine distinct

sensor data in separate low-level components of a model. The basis for this statement-process uhe'i

threshold-has already been elaborated and supported by earlier examples. For the optical. acoustic.

and tactile features, an agreement of surface estimates is self-supporting, a disagreement should be

resolved with guidance from a higher level, perhaps by a call for more sensor data. Also. by

maintaining separate low-level model components, the environment can be characterized by multisensor

signatures.

The last issue is more interesting. The camera intensities cannot be merged directly into a

simple, data-level model if they are taken from different positions or look directions-the camera does

not measure distinct physical properties that can be represented in a three-dimensiona/ spatial

distribution. The same is true of the sidescan examples in the last chapter. In fact. all the sonar

models I've described so far are based on the original assumption of directional independence-

uniform scattering in all directions.

For the binary models, where a scattering threshold is used to infer only the probable presence

of some target. such an assumption is useful: it reduces the computational load and results in

reasonable surface estimates. For continuous models, if the look directions of neighboring events are

similar (individual sidescan tracks), results are also useful. though the model is view-dependent.

However. where there is a significant variability in sensor attitude, the assumption breaks down. Such

ik the case for overlappine ,idescan trackg: a Oimple d.'an-level combination of ider'n event- from

opposing look directions tends to produce a mid-intensity blur.

In the context of the numerical modeling approach developed here. there are two possible

solutions. First, the model could be expanded as a function of look direction as well as position. In

other words, rather than a three-dimensional representation. a five-dimensional model could aggregate

events according to the incident angle of energy and location in 3-space. If a separate transmitter and

- 125 -



receiver are considered along with the bidirectional scattering properties of real surfaces, then a seven-

dimensional representation is needed. Though some simplification might be made. memory and

processing requirements go beyond the practical bounds of today's computational technology.

The second approach is to make use of information from other sensors that measure important

parameters directly. For cameras and sidescan sonars, the information needed to build a model of

reflectance or scattering properties is surface shape. Such information is sometimes available from a

single sensor package-a laser that measures range and intensity (Nitzan et al.. 19771. or a sidescan

that measures phase and amplitude (Sea MARC II). Separate sensors can also be used. leaving open

many more avenues to multisensor approaches. In both cases, though, the main advantages are that

complementary sensors can be used to improve modeling accuracy and efficiency, and to derive "new"

information that is. in a sense, greater than the sum of its parts.

6.2 CURRENT TECHNIQUES

A growing interest in multisensor techniques is creating a body of literature too broad to review

here. Extensive references and a summary of a workshop on multisensor integration for manufacturing

automation are given by Henderson et al. [1987]. A collection of recent papers from a similar

workshop on spatial reasoning and multisensor fusion can be found in Kak anud Chen [19871. Other

references to relevant techniques are given in Chapter 2. Most researchers approach sensor integration

from. at least, the physical level, and mainly relegate the combination to higher-level processes.

This rest of this chapter treats physical-level modeling by mapping from data-level events with

multisensor information. In the first part of this section I briefly discuss three representative terrestrial

applications that combine optical intensity with shape information, since the problem is similar to sonar

modeling underwater. The second part gives an overview of techniques used by the underwater

community for large-scale acoustic intensity mapping.

6.2.1 Optical Intensity Modeling

An early investigation of combining optical reflectance and range data is that vtwm ,. 1

(1977]. For their experiments, the authors use a calibrated laser that returns range and amlllitlde for

each scan position. The range data are used to correct optical intensities for inverse square-la" losses.

resulting in a value that is the product of the cosine of incident angle and the diffuse surface reflectance

(except at near-normal incidences where specular reflection dominates). The range-image jump

boundaries define the occluding contours of planar surfaces in the test scenes. After segmenting these
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planar objects, the incident angle for each range-corrected intensity datum is used to calculate the

coeticient of diffuse reflection. The resulting model of the scene is view- and lighting-independent.

and represents derived physical properties.

Liebowitz and Casasen [1987] describe a more complex approach intended for object recognition

on DARPA's A4tolomnomus Land Vehicle. Two dimensional range images are segmented into

background/foreground pixels by scan-line thresholds. Different algorithms are then used to segregate

foreground pixels into Regions Of Interest (ROI's). All operations are carried out in the two-

dimensional plane for convenience, but may be transformed to rectangular coordinates after processing.

The authors focus on range-data processing, but discuss how the approach is to be implemented with

complementary color and intensity data for resolving the ROI-ambiguity of contiguous objects.

Whiteside et al. [1987] describe an application of mapping aerial photography onto a three-

dimensional surface derived from a separate digital terrain-elevation database. Each point in a phoo

mosaic is projected onto the surface with a perspective transformation. which provides a basis for

"hidden-pixel" removal. From the composite scene, stereo pairs or animated sequences of simulated

overflights are generated. Though the horizontal resolution of the elevation data is much less than that

of the photographs, the higher-frequency camera data combined with the coarse surface description

provides a visual realism better than either representation alone (an animated video tape may be

obtained from the authors' company).

6.2.2 Acoustic Intensity Modeling

Sidescan sonars are the most common sensor for acoustic intensity mapping underwater. In most

applications, a fixed TVG and a planar-bottom assumption are applied, as discussed earlier. The

resultant two-dimensional data sets are then treated as two-dimensional sidescan "images." These are

sometimes enhanced with image-processing techniques. or merged to form sidescan mosaics.

Perhaps the most sophisticated sidescan processing system is MIPS (Mini Image Processing

System). developed hy the U.S. (3ological Surey (Chavez. 1986; Chavez er al.. 1987]. MIPS is

mainly devoted to processing data from GLORIA. the long-range sidescan sonar being used to map the

Exclhsive Economic Zone, but has also been applied to Sea MARC I data [7'wirchlll. per-onai

communication]. In operation, the water column is removed from linear sidescan image segments and

a slant-range correction is calculated. Pixel interpolation compensates for aspect-ratio differences along

and across the track, line averaging is used to correct for velocity variations, and a radiometric

calculation normalizes the intensities across the track. Two filtering steps compensate for speckle and

strip ig noise, and the images are enhanced with sharpening filters and contrast stretching. A two-
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dimensional translation and rotation then registers the images for mosaicking. Manually-entered

control points are used for two-dimensional warping as a final registration adjustment of overlapping

segments. Some work is also being done in extracting stereo pairs [Chavez ei al.. 1987] and in the

projection of GLORIA images onto bathymetric surfaces [Twitchell, 1988).

Farre and Rvan f 1985, 1987] have combined Sea MARC I and Sea Beam data sets. In separate

preprocessing steps, contoured bathymetric data are interpolated and gridded to match the resolution of

geometrically-corrected (for position and heading) digital sidescan images. Because the sidescan data

are slant-range corrected with the planar-bottom assumption, the combination is a kind of orthographic

projection, which does not take advantage of the bathymetry to remove relief-dependent distortion in the

sidescan data. To generate stereo pairs. each sidescan pixei is shifted as a function of the associated

depth value to generate left- and right-eye views. Though no intensity corrections are used to

compensate for bottom-slope effects, the method of presentation allows a geologist to more readily make

the association between bathymetry and intensity variations.

De Moustier [1986] investigates quantitative assessment of bottom backscattering with Sea Beam.

Using an ensemble of successive pings, the first-order statistics of the demodulated signals from near-

specular beams form an envelope pdf. These are fitted to a Rician distribution, whose shape is related

to signal coherence, and an estimate of surface roughness is derived (see also Stanion. 1983). In

analyzing data from three test areas of different bottom types (with supporting ground-truth

information), good comparative results are demonstrated. To complement this information, the angular

dependence of different beams is considered for the test areas, but results are less compelling. Later

work [de Moustier. 1988] uses the signal amplitudes from different beams in a sidescan-like

presentation. which provides a qualitative indication of roughness within each beam footprint.

6.3 SEAFLOOR BACKSCATTERING

In developing the backprojection approach in Chapter 3, I assume the environment comprises

point targets that scatter uniformly in all directions. The examples of the previous chapters show this

assumption gives good results under most circumstances. However. the scattering function of real

surfaces is more complex and has a strong directional dependence. Also. I have ttsed the term

scaftering to describe a process that comprises reflection (coherent) and scattering (incoherent)

components. A full treatment of the subject is beyond the scope of this thesis. but more complete

discussion and references may be found in Horton [19591: Urick [1975. 1979]: Clay and Medwiu.

[19771: and Ogilv'v, [1987].
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Backscattering from the ocean floor is particularly complex. The bottom is often layered with

materials that have different acoustic p,.perties and. because the sound can penetrate below the surface

where it is reflected, scattered, or refracted and reradiated. the received waveform is a composite of

returned signals from different scatterers. The seafloor also shows much variation over even small

regions. vertically and horizontally: it may comprise different materials-mud, sand. or rock. for

example-with different absorption and reflectance properties, and a range of surface roughnesses as

well. Angular and frequency variations are highly variable with bottom type.

Probably the first reported work on scattering from rough surfaces was by Rayleigh [Ogih'v.

1987]. who discussed the effects of normally incident sound on corrugated surfaces separating two

acoustic media. Assuming a locally smooth and planar surface, the ratio of incident to reflected

intensity, u. is described by the Rayleigh formula [Urick, 1975] as:

[m sin( ) -(2 - COS
2(#))A'12

mt = sin( ) (n 2 + cosI( ))V'

'U2= 1- .1t

where: m = p1/2

n = C t/c2

and: p = material density

c = speed of sound

= grazing angle

The subscript I identifies the material in which the incident and reflected rays are traveling, and 2

refers to the reflective material, into which part of the energy (P2 ) is transmitted.

In considering roughness, Rayleigh assumed that the scattering could be written as the sun of

plane waves travelling away from the surface. A measure of surface roughness is given by the

Rayleigh parameter, R, as (Urick. 19791:

R = 2kh sin(M)

where: k = acoustic wave number := 2n/X

X = acoustic wave length

h = rms roughness height
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for scattering in a tIo-dimensional plane. The Rayleigh parameter is found empirically to be a good

indicator of roughness [Unck. 1979]. When R<< I the surfacc is considered : hen R>> I the

srtace is roa ,:. Note that the characterization is frequency dependent. since scattering varies with the

relative sizes of acoustic wavelength and surface irregularities. The intensity ratio of returned sound to

incident sound for a rough surface may be expressed as [Urick. 1979]:

PR(O) = us,W)e R

%here a, is the reflection coefficient that would exist if the surface were smooth. The approach has

also been extended by other authors to non-normal incidence and to random rough surfaces [Ogilvy.

IQ871.

The perturbation method (also known as the Rayleigh-Rice method) models the rough surface as

a smooth plane that deviates locally due to irregularities. The approach calculates the deviation from

the planar scattering coefficient caused by these roughness perturbations. The constraints imposed by

the method are that roughness heights are everywhere small compared with the wavelength of the

incident wae. and that the surface gradient is small compared with unity. The use of this method has

been limited because of these strict conditions, and because the range of actual surfaces to which the

method applies are just those for which the effects of roughness are small [Ogilvv. 1987].

The most prevalent approach to scattering [Ogilvy. 1987] is the tangent-plane method. or

Kirchhoff method, first applied to acoustic wave scattering by Eckart [1953]. The method gives an

approximation to the scattered field on the surface, in terms of the incident field and plane-wave

reflection coefficients. The scattering surface is assumed to be everywhere smooth enough that the

reflection properties at each point on the surface can be modeled by a plane parallel to the local

tangent. In most work, the reflection coefficient over the surface is assumed constant, usually unity

[Ogilwv' 1987]. The method requires no constraints oi the magnitude or gradient of local surface

height. but restricts the rate of change of the gradient (radius of curvature). Surfaces for which tnis

restriction cannot be satisfied may be considered using the Rayleigh method [Ogilvi, 1987].

Both the conventional Kirchhoff method and the perturbation approach assume that all points on

the surface are ensonified by the incoming wave and that multiple scattering can he neglected.

Particularly at low grazing angles these assumptions are invalid. and various attempts to incorporate the

effects in a theoretical framework have been attempted [Ogi v., 1987]. Other works consider the effects

of different scales of roughness. generally using the Kirchhoff method for the large-scale roughness

and perturbation theory for the small scale [Bass and Ftiks. 1979: Ogilvy. 1987]. Other such composite

models are extended to account for volume scattering, which may dominate at low frequencies or at

intermediate grazing angles in soft-sediment areas [Jackson el al.. 1986].
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Ex\peri mental r esulIts of backscattering and bistatic measurements are profuse I Horioi. I 59:

, ,. lQ75. 1)71): Cc', lI/ j t tdt 1Q77: OCv. 19871 and show that the receix ed signal call be

rezarded as omtprising a colierero component. Strong near specular anigle- and a diffuse conipomiento(t

Ilore Constant i ntcnsitv. 0\ er other scattered tmgles. The relative strengths of these components and

the shape ot (lie scattering function) depends strongly on the Rayleigh parameter I()e,/mv. N 871.

Okcil%,\ concludes that the different theories are 'alid over certain regimies of roughness Only, that no

cornplete treatment of the problem exists, and that this is li kely to remlai n the cas.-, as attempts to

enhlance the iliditv of anyv theory necessarily introduce greater mathematical contplexitv.

SCu:/M r Cayc [I198o] otter a practical perspectiv'e onl thle issues concerning Sonar as a remlote-

s;ensioci tool. For classification of thle seafloor (and marine organisms in tite water coIlnin) there is an

engineering tra,,deoff between (I ) high-resolution systemns and direct analytical techniques. and (2)

lox~ er- resoIlution systemis and indirect analytical techniques. Very high resolution is required fobr

adequate classification: %khen such resolution is not available, indirect or "inverse" methods are

emploved. With loo. -resolution systemns, high-VOIle coverage is obtained with a single beamn: but

interpretation of the data nmy be involved and indirect. High-resolution sonars give a more direct

mapping of tite Ctl\ironnieitt but, because Of low-\ oLume coverage. multibeamns are uIsually' required and

data rates are hizh . Accordinc- to the authors. the engineering challenge is to process and display the

data in a usetul f orm . attd it is crucial to produce meaningful. quantitative imiages in real time so that

s;amplng decisions can bie made.

6.4 THE SIDESCAN PROBLEM

Sidescan sonar s depend onl xariations ill bottom backscatter. as a function of material properties

mrid surface ;htape. to prodJuce anl intensity tmap of the seafloor. Because of this joint dependetic-v

thoughi it is impossible to distinguish between the effects of large-scale (relative to acoustic %%a\elenptlt

-urface relief and Surface scattering due to roughness and material properties. In theory, a perlectlv

nrootlt bottom %k ith a ;patial distribution of differetnt materials can return a sonar signal identical \' ith

01ne tr-Oti a surface that has1 Uniform -cattert ng properties but anl appiroptrtate teliref.

-\corrstic dlhm-' als;o offer a roich1 (tIrantitatiXe measure of relief xk here Ole~ bivton iz nlosZtl\

zinootlt mud Ie'.eI and altitude is lsnox~k1). and a qualitatixe measure where tlte plat'rr-bottoim

;tssumplljttut does not hold. l-oxkexer . shadmx~itlg and intensit\ %ar itioris canl ittrnticeiiot'0

dinieti storm I idesca rt inmazes an artificial structttre that does not correspond to the ph\ sica I strutitre.

Thi is can make corre t intertretation di fficttlt. if not imrpossible . for ec ti a traitined litu rat e\pert
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Figure 6.3: Sea MIARC 11: relief map for intensity transitions.

aa

-I AxP2

Figure 6.41: Sidescan geomnetry artifacts.

Il the appirmni ate pattern of acoustic shadows that would lie generated for such a zae limnx

schemnatically. As the sonar nears the feature, the shadow-length decrease-, an(l goes to zere w;S the

secnsor flies overhead: as the sonar passes and draws away, the shadow transitions to the ollpwviic side

and lengthens smoothly. A' the juncture between two swaths. there is a step change in the shado\k

position caused hy the opposing look angles.

-133-



Inreliy tile iiiensit \ariatiorls of the ensonified areis -,re complicated I1w the noninreair

dependence oi razin ngle an btemr reua hee-di mensional geometry Figu re h~2s~\
4;c\erat suchI S-shaped arti facts associated %ith the deeper rtl ts as %kell as thle ridges seen ii Figirc h~

Ille ettect iS rao oos oer Iezatie-ichet areas ais thle brighter intensities tran1sition 110111 one .%;III to

thle other. At the 0\ erlapq bectxsecil tracks. ju stapositions of high and lok% intensities are e' dent i-e

also;( Fi,,ures 5 1 - and S. 14).

Ili Figu re h.3. thle Cn r~ ature of fractu res ( trendinrg north -north wkest) between thle t ran sform

segments (trending east-northeast) is seen in the bathivmetrv as a true characteristic of the fault region

caused hv thle plates sliding past each other as they separate fl Foo.io and (iah'. pers'onal

communication 1. Howve\er. thle artificial structure imposed by tire irrterrsit ,ransitrons is riot readi k

dlistinguished'from reality using thle evidence itt Figure 6.2 alone: and many- such artifacts are present

ait a smaller, more subtle scale. For a geologist trained in sidescan Interpretation, such analysis; ma%

be possible: f or a machine intelligence at today's leief of development, tire view-dependent intensitN

representation is intractable.

InI typical sidescani processinrg, geometric distortions arc also caus-ed 1w slant- range comnecctions

based onl the planai-bonom assumption. Figure 0.4 is a profile view of two sonar tracks riornial to tile

page icrossed ci: des represent tile sensor location). The two tracks are t~okri at the sante depth hut.

because of thle xariation ini altitudes (,1 arnd a,). thle assunied planes (p, arid p,) do riot correspnrd. .

point on the surtace at x,. appearing in the two sid--cati images. is projected onto each platne at thle

itersectioti xNithi thle corresponding range arc. For the first pass. thle lateral distortion is indicated as

6x1 . arid for the second as ax-. If the two-dimensional images are niosaicked according to thle sen!;or

track, thle total nlisregistration of the point is 6x.

The total horizontal distortion shown iii this figure is sign ificant-about 25' (iof mlaxim tril range

for each side-but not Unreasotiable for high-relief terraini. In a real mosaic, this geometric distortion

wAould be compounded by% thle superposition of shadows and high-intensity regions of images generated

froni opposinrg look angles at x,. Even if a litrriari operator could correctly iderifv x, at corresponding

control points iii tile separate images, aid( if a txo-di mensiotial warp were applied to bring thle ;)(oints

nto registiration, thle intei sitv differences would still exist: arid other points itt the image-, could suiffer

more georiletric (li-tortion from the ar itself, For atitonilatic prcsig.the corresplonldence tfol't-111n

is nointti\ al and computationlalhv expetisiCe: it is; further complicated by the indistinct features of iratuniA

i ierw kater terra inr. Reg'ard less of 'A lether it can be accomplishied. tilie satie problem': s exist alor thne

liunati-suprrised process.
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6.5 LANIBERTIAN SCATTERING

1", esabl is h the true scattering geometrv and to hielp resolve amibiguity in a sidescan intens;ity

;siinal. bottom-shape information is needed. With position and attitude information, geometric

coriection ;s ;traighitorward: intensity manipulations are more complex. Because of the wide variation

in bottom characteristics, a comprehensi' e approach to scattering estimation miust be treated as spaiiallN

nlollstational v Not only does the acoustic albedo vary w ith material type, but the angular

dependence-the shape of a normalized scattering function-also depends on bottom characteristics

an1d onl sonar frequenc\).

The function called Lambert's la\w is a type of angular variation for rough surfa, ces of -ten satiified

nl both optical [Bai~cird and Brown. 1982] and acoustic (Uric. 1 975] domnains. If we consider a sm~all

,;urtace. L-t. then thle power intercepted by that -area is Ijsin( ,)dA. %%here 1i and are the inid~eint

itlensitx and grazing angle. as before. By Lambert's law, this power is assumed to bie scattered inl

proportion to the sine ot the grazing angle. Then the intensity at ait unit distance in the direction 4' is:

%khe-re Phf is a proportionalit-y ccnstant. or' Surface albedo. Then for a unit surface area and scattering

inl the back'.kard direction, for whicht p= n-f. the intensity ratio is:

In other .%ords. the angular dependence exhibited bv such Lambertian surfaces can be modeled as the

zine-q~uared of the Erazing angle f or a monostatic active senlsor.

Though no surface satisfies Lambert's law exactly, very roughI surfaces fit thle model reasonably

A kelI 7r! k~ 19751J reports that Lambert's law- appears to be a good scattering description fortan

(leep-A ater bottoms, A.t orazing angles less than 45'. there is little frequency dependence in the range

1 -31) MH7. Ho~ever. Urick cautions that Lambertian scat-tering probably applies only to fvp(--1II

bottoms-tho~e characterized hy heavv dissection and underwater ridges. For a tvI.Y'-I bottom-byssal

pI:?i n,; 'kit 1 itt IP?') ih le, s-a n L iiri and trerj I I (-)(% -)Iriqtioln~ re hI i I .r;,- lv'toi termied "hll

r eoions. st sanl intermediate beha~ ior with angle arid frequency.
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Figure 6.5: Sea MARC I intensity map of Clipperton area.

6.6 SEA MARC/SEA BEAM MODEL

In this section I describe an approach to modeling Sea MARC I intensity data where a Se'-, Beamn

bathvimetric model provides the basis for correcting the geometry, and for partially removing thle vie%%-

dependent effects of bottom shape. The data come from the Clipperton Transform Zone-a site of

crustal s;preiding, fracturing. and volcanic construction-which offers a likely fit to (nick" t iv;'c-ft

bottom characterization [Gallo t al.. 1 986-, Kaslens ei a[., 19861. Then for a sidescan sonar operating

in thle appropriate frequency range t 1-30 kHz), the scattering properties of the region can fie reasonalyl

characterized as Lambertian. Since the Sea MARC I operates at 27/30 kHz, such a scattering model i-

used in thle discussion that follows. The simple Lambertian, characterization is not required for this

developmient, and a more accurate scattering model (perhaps derived from local data) could [,e

sublstituted directly.

f-icfire 6 5 ;hom- a Sea MLARC T 5idescan intensitv map of thle Clipperton -irrn %hif- the -1~

MACSea IBeatti model is constructed. The data set is fihe same as in Section 5.2. 'Akhe onI'% Hte

fir,; part of tite track had beeni processed at a higher resolution The modeling is identical. excrpt that

al ti ed cross;-track tIornilalization gain is computed from) a prelirninary pass through the data m as fill 5,ea

NLAPC 11 procce;qintt int Section 5 3). For comparison, an intensitv mnap from t mute datal st-
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Figure 6.6: Sea MARC I intensity map of Clipperton area (from Kasiens et al.).

processed at Lamont-Doherty Geological Observatory-is shown in Figure 6.6; the photograph is from

Aasie'ts et al. [ 19861,

Figures 6.7-6.9 show the bathymetry from the same region of the Clipperton Zone. The data

used for stochastic modeling were supplied by NECOR at the University of Rhode Island. hv courtesy

of Dr. Dave (allo of the Woods Hole Oceanooraphic Institution. The full data set comprises several

surveys conducted over a 3-year period. Unlike the Sea Beam data described in Section 5. I, the

navigaaion had 1heen corrected with track correlations, and the depth/offset pairs had been averaged over

fite pings. The processing is as described in Section 5. 1, except that the modeling functions of Section

3.b.1 are used:

fM = {X'fs(Pk'Sk.1).fH(aPOaSk_ 1 ) }

ft= O7p +aOSk-

fS = (Pk'P+Sk-I)/O7s k

Because the 5-ping averaging produces a staircase effect in the model, a convolution mask is

applied to tie raw depth map to smooth out the artificial texture: the low-pass filtered depth mal is
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Figure 6.7: Sea Beam contour map of Clipperton area.

shown in Figure 6.7. For comparison, a contour map from Gallo et al. [1986] is shown in Figure

6.8, with the slightly smaller modeling area delineated. A perspective view of the area is shown in

Figure 6.9 (no vertical exaggeration).

Because of positioning error and the large Sea Beam footprint at these depths (up to 160 in). the

bathymetric iaps cannot give the detail seen in the sidescan images. The two data sets are

complementary: Sea Beam has good vertical resolution but poor horizontal resolution: Sea ".ARC I is

incapable of resolving depth but furnishes high-frequency information horizontally. For geometric

correction of sidescan data, the Sea Beam model is adequate. In the area considered here. for an

assumed altitude of 200 m. at a maximum Sea MARC I horizontal range of 2500 m. looking down the

slope where relief varies up to about 1000 m, the lateral distortion introduced by a planar-bottom

assumption is greater than 300 m, or about 12% of maximum range. Small errors from the low-pass

Sea Beam model do not affect the correction significantly.

However. the match is not ideal for mapping intensity data to a physical scattering dktribimion.

The Sea Beam surface is too smooth to estimate surface normals that match the high-resolution Sea

MARC I data. Even if this were not so, registration errors between the two data sets preclude such

fine-scale correction. The approach I take uses the Sea Beam surface to compensate for gross

variations in intensity.
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Figure 6.8: Sea Beam contour map of Clipperton area (from Gallo et aL).

If we assume a flat bottom and consider the digitized Sea MARC I signal for a specific range bin

(indicated by the subscript j), the received signal may be expressed as:

i --- 10J u(r)b2(O)pu(r,O)sin 2( )dA

where: 10 - transmitted Intensity

u = transmission loss (absorption and spreading)

b = beam pattern

The expression is similar to the one described above for Lambertian scattering, except that the intensity

losses are modeled for propagation through the medium and for the beam pattern.

The area of the bottom intersected is a range annulus defined by the beam pattern and the

sampling interval, which corresponds to a fixed horizontal distance. Ar. because of the Sea MARC

sampling scheme. Since the sampling increment is small, any variation with range over Ar is

negligible. With these assumptions, the expression can be rewritten as:

li = loyJsin"( )Arf e b2( o )p()d9
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Figure 6.9: Sea Beam perspective view of Clipperton area.

The remaining integral can be considered as a weighted sampling of the acoustic scattering albedo over

the width of the sonar beam, or:

b1(e),u(e)d0 = Madb

then: Ij IOvjsin( )Ar.t b

= Tu,,sin 2( )

so that all constants and range dependent parameters are merged in one factor. -, for each range bin.

If the fish flew at a constant altitude over this planar bottom, then an appropriate TVG. T(j),

could be calculated as:

K

J/N Euaksin2(0j)
k=0

K
pos in (40j)
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I here: p=I /,N Emk
k=O

a nd: tj= tan [i

po = average albedo

. ..hitude

In fact, the Sea MARC I TVG is determined by towing the system over a relatively flat bottom at the

normal operational altitude and aeraging the received signal over many pings. as expressed above.

The constant K is chosen so that the TVG-compensated signal normally falls within an amplitude range

suited to the system's analog-to-digital converters (switch settings on the console allow manual

adjUstment for varied conditions).

If ,e now% consider a real bottom, where the bottom shape and scattering properties vary. then

the signal output by the system can be expressed as:

or: -= + TLu)sin 2()

posin( J)

,, here: d = u0 + 6u

and I assume that the signal is normalized to fall within the range 0 < 8 < 1. If I define the

!1(,,,?IUIUL'd scattring residual as = /i O. then:

8 sin 2(qbj
[J=sin2($) -I

Using surface normals computed from the Sea Beam depth map and the altitude, position. and

heading from Sea MARC I data. & is computed directly from the sidescan signal. The residuals are

modeled in the same manner as intensitv data with tile same rationale: since u, is an average weighted

I,\ the heam pattern, the hnckprojection reflects this same shading.

For the examples that follow. I use a variation that limits the compensation to a factor of to.

The residuals are calculated as:

)= 8,[a - he, i2 * l) ]-

lhere: a = 2.0
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Figure 6.10: Sea MARC/Sea Beam synthetic sidescan maps.

b = 1.5

c = 0.405

The exponential form is chosen as a convenient way to prevent large differences between the surface

normals derived from Sea Beam and the real (unknown) surface normals from causing large

fluctuations in the residuals. The motivation is to limit the dynamic range for display purposes.

Figure 6.10 shows a sequence of models (clockwise from upper left) that reflect the processing

components. The first image is of an intensity model similar to that of Figure 6.5. The next image

(upper right) is from a synthetic sidescan model generated from the Sea MARC track and the Sea Beam

surface normals, where:

6,, = [OL" 1112

In other words, the model is built from a synthetic sonar signal, 8. taken as tile dot pro(hct squared of

each surface normal. n, with the unit vector from each surface grid element to the sensor localio ). a.

In the lower right, the synthetic sidescan model is normalized by the sine-squared of the grazing

angle for a flat plane at the altitude recorded in the Sea MARC I data, so that:
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Figure 6.11: Nuoiaized Sea MARC/Sea Beam intensity map.

[oc" n] 2

sin2 ( j)

which corresponds to the inverse of tie compensation factor used to compute the residuals.

These two images are not exactly analogous to the analytical formulation though they were

created by a computer implementation that processed intermediate terms as a synthetic model.

However, they allow a more intuitive appreciation for what is taking place. The first is like an intensity

map that results from a sonar signal without a TVG (in an area of uniform albedo). The high-intensity

region just below the sonar returns a strong signal at near-normal look angles, and the signal decays

with increasing range and decreasing grazing angle.

The second "TVG-corrected" model shows the effects of surface slope. In the brighter regions

the actual grazing angle. ,. is less than the assumed planar grazing angle. ti. In stch areas the signal

can exceed the dynamic range of the sonar system, and saturate or clip at nmaximum intensity. Such a

problem is evident in Figures 6.5 and 6.6 on the inside curve where the look angle is near-normal to

the high-relief areas downslope. The converse is true for the darker regions where t >> i: the signial

can fall below the smallest quantization level and detail is lost.
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Figure 6.12: Sea MARC/Sea Beam multisensor model.

The image at the lower left in Figuie 6. 10 shows the model of residuals. computed as described

abo~e. In effect, the result is similar to dividing the original ir, age at rhe upper left by the synthetic

model at the lower right (compressed by the exponential formulation). Because the bairvmer nic wap iz

a tow-pass representation of tle real surface, the residuals show the high-frequency c, ponen! of the

imensity signal and include variations caused by fine-scale relief; tile model shows the effect of

removing gradual variations caused by large-scale surface features without destroying all the useful

information in the signal. The overall effect is to "normalize" the final sidescan map so that more

detail is apparent in the extremely dark or extremely light areas of the raw intensity image, An

enlarged view is shown in Figure 6.11.

In practice. the processing is not carried out with a sequence of models, but includes the

intensity compensation and geometric correction on an event-by-event basis. Figure 6.12 sho; i the

Ottput of al i mlpernentationl that creates a perspective display, mappe(I to tie Sea Ben snrface as each

event is processed. As before, all modellng is incremental, using the sidescan data in a sequential.

real-time manner (the Sea Beam model is preprocessed). At the scale shown above (the two-

dimensional model size is {384,288 ), the processing speed is about four times faster than the Sea
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MARC I data rate. and the bulk of the computational load is associated with display (Gouraud-shaded

polygons "ith hidden surface removal).

The results of this series of models are mixed. Because of the gross mismatch in resolution of

the tmo data sets (and some misregistration). the intensities in some areas are over- or

undercompensated. and appear as "hot" and "cold" spots in the images. As a postprocessing step. an

adaptive filter may produce superior results. For real-time applications. though. the implementation

shows the potential for combining multiple sensors to produce physical models of the envirunment with

'onphysical" data. The synthetic sidescan representation is a forvard model derived from assumed

shape and scattering properties. The stochastic backprojection produces an inverse description that uses

the forward model to map intensity data to the physical level.

6.7 SUMMARY OF IMPORTANT POINTS

This preliminary sortie into multisensor modeling is sparked by a conviction that such approaches

are becoming more feasible. and will become essential as more sophisticated underwater problems are

addressed. Though a Sea Beam/Sea MARC I model does not offer an ideal framework for 1'nultisensor

research. it serves here as a reasonable (and readily available) testbed for preliminary investigation.

However. a system such as Sea MARC II, which provides phase and amplitude together. has a greater

potential for building more sophisticated scattering models, and would facilitate an estimate of the

angular dependence of scattering with grazing angle. as well as the acoustic albedo. Other such

multisensor approaches are foreseeable, and I mention several in the next chapter. To summarize the

important points in this chapter:

Multisensor models are needed to: fully characterize an environment: overcome practical

limitations of individual sensors: add redundancy: and furnish information to resoive physical

properties.

Cameras and sidescan sonars measure intensity, and cannot resolve the underlying physical

properties without other information or eimplifving assumptions.

Intensity and other view-dependent (nonphysical) data cannot be combined in a simple three-

dimensional representation.

With complementary information from mu!tiple sensors. more complete and more accurate

models can be built. with less effort than for an exhaustive analysis of single-sensor data.
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* Acoustic hackscatter from the seafloor is complex. and cannot be characterized fully %kith

;idescan intensity mapping alone.

Simple sidescan image processing cannot eliminate geometric distortion introduced bN the

planar-btiom assumption or intensity artifacts caused by the interaction of surface shape and

look angle

- hough Sea Beam and Sea MARC I are not an ideal match for inultisensor modeling. thev fc

complementarv information that can be used to advantage.

-The stochastic backprojection r.pproach provides a consistent computational framework in %khic1

real-time. multisensor data can be managed.
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Chapter 7

CONCLUSIONS

In this final chapter I highlight important points discussed earlier, describe the results and

limitations of thesis research, and point to opportunities for future investigations and to possible

applications. The first section briefly restates the guiding motivations and genetai approach. and

summarizes results. Next. tne iimitations of thesis research and of the method itself are described.

This provides a background for discussion of potential research areas that may resolve unanswered

questions and expand on the basic framework. Finally, I point to several areas that can benefit from a

stochastic modeling approach, and describe other multisensor applications that appear promising.

7.1 SUMMARY OF RESULTS

My approach to building a model of the underwater environment is motivated partly by a need to

give operators of remotely operated vehicles (and manned submersibles) more cues to enhance efficient

piloting. Techniques that begin to take on part of the human's load can also facilitate the transition to

more intelligent systems, and serve as building blocks for autonomous underwater vehicles. Other

applications that can benefit from real-time feedback---exploration. surveying, and mapping. for

example-are also candidates for stochastic modeling. The salient characttiistics of such applications

are: real-time constraints. high-bandwidth sensors with redundant information, lack of prior knowledge

about the environment, and inherent inaccuracy or uncertainty in sensing and interpretation.

A low-level numerical approach, made practical by today's computational technology, can lead to

more complete and more accurate models, often with less processing effort. Rather than perform an

exhaustive analysis of sparse data, far beyond the point of diminishing returns, we can make use of the

redundancy in overlapping data combined with complementary information from multiple sensors. By
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eYxplicitlv representing uncertaintv, a stochastic model lessens th- danger of making unjustified

assertions about the vorld, and offers a Measure of information qualit.y.

The method I formulate to satisfy these criteria-stochastic backprojection-is a s,,nthesis of tv.o

competing' processes. By convolving a soatial model of each event with the corresponding

localiza'ri:-, runctions, our kno\ ledge of that event is blurred according to the error or tucertain't in

the application. At the same time, an incremental approach to reconstruction sharpens the model as

more constraints are added. The effect is that of a recursive estimator, so that the detail and certainty

of the model are enhanced as more information accumulates. In the absence of any inaccuracy or

ambiguirv. the method beconles an incremental reconstruction by backprojection and summation.

With enough events, the model converges to a "fuzzy" surface distribution, ,hich degrades

gracefully as error and uncertainty increase: the effect is that of a three-dimensional low-pass filter.

From thL distribution, estimates can be made to subvoxel resolution, which may permit the use of

coarser, more economical models. Even simple sensor models can produce acceptable results without

the performance degradation of more sophisticated representations.

Other infermation made explicit in the model-emptiness and ignorance. for example-can be

used directly by higher-level processes. The low-level approach can also reduce the processing burde

at higher levels, and serve as an intermediate representation that decouples these more asynchronous

information sinks from the high-bandwidth data sources. By partitioning algorithms into preprocessing

and real-tim componens, modeling efficiency can be further enhanced. Unl;ke analytical or object-

and feature-based methods, the processing load and model size are deterministic-computational

hardware and timing requirements can be forecast.

With the computer simulations and application results, I have demonstrated a consistent

framework for real-time modeling. Because the approach is largely independent of scale, resolution.

and sensing modality, it can be effective over a range of applicaticns. For those data sets described in

Chapters 5 and 6. the quality of modeling results and computational efficiency are appropriate to each

real-world system. Even the unoptimized computer imrlementations developed for thesis research are

fast enough with standard hardware to accommodate real data rates. The implication is that cost-

effective fielc, -,vtems are well within reach.

7.2 LIMITATIONS OF CURRENT IMPLFMENTATION

The approach I have taken to modeling research relies mainly on a qualitative, visual assessment

of results. On the one hand. this is important for man-in-the-loop applications that are subject to the
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same criteria of relevance and utility. On the other hand, vision provides the highest bandwidth of all

our senses, and offers a practical way to digest the large volume of information that a model contains.

Such an approach has allowed me to quickly define the "envelope" of stochastic modeling-to look at

the big picture and spot important determinants of perfirmance.

For other applications, though. more quantitative measures of modeling fidelity and certainty are

needed. Purely analytical formulations are intractable for all but the simplest combinations of

geometry, sensor characteristics, environment, noise, inaccuracy, and ambiguity. The advantage of a

numerical model is that these parameters can be accommodated more readily and more accurately

without analytical oversimplification. Simulations offer another alternative for research validation, but

need a sophisticated forward model for good results. Even then, the outcome is subject to built-in

preconceptions and limitations to our understanding of real-world systems.

Further assessment and refinement require good ground-truth information. This is a problem

not only for this research, but for other investigations in remote sensing underwater. Unlike terrestrial

or satellite applications, the seafloor is largely inaccessible, and the provision of a realistic benchmark

enxironment mandates resources unavailable for this work. The supplementany data for the Monitor

work (photographs and drawings) is a step in this direction but falls short of a fully quantitative basis

for evaluation. The Sea Beam and Sea MARC I comparisons in Chapter 6 are also useful, but only as

a qualitative comparison with other data-processing methods.

Similar to the lack of baseline information about the modeled environments, is the lack of

complete sensor models. In practice, calibrated data are rarely available from standard systems:

normalized data. partly inverte- with the system's built-in model. are sufficient or desirable for most

applications. For research purposes, however, the aggregate of assumptions-the unknown

approximations of the system designer as well as my own-complicates the evaluation of distinct

modeling parameters. In one sense. though, it is a testament to the generality of stochastic modeling

that such data can be treated consistently with good results. The sensor's built-in approximations are

just another form of uncertainty that can be modeled directly.

Regardless of these limitations, the field data have been useful for testing under "real-world"

conditions. However. an appropriate data set was not available for validating the stochastic poitioning

component of this thesis. As for ground-truthing, the resources needed to conduct such a tield

program were not at my disposal. Though the simulations show that such an application is

computationally tractable with a stochastic model and suggest that good positioning may be achievable.

my faith in pure simulation is bounded.
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In practice, tie effecti.'ness of terrain-relative navigation will be determined largely by the spatial

handidth and distinctness of environmental landmarks. A smooth, featureless bottom offers no basis

for horizontal positioning: such repetitive features as sand bars or large ripples may offer good

resolution but are ambiguous. An interesting possibility for small-scale operations. though. is to seed

siuch an area with distinctive markers-the Hansel-and-Gretel approach. For example. passive sonar

reflectors could be inexpensive and disposable (even biodegradable), and serve the same purpose as a

transponder network. An operational strategy might start with a survey of the passive net using

techniques similar to those for long-baseline acoustic navigation.

Perhaps the strongest objection to this work that might be raised is that other techniques produce

equivalent or better results (in large-scale mapping for example). I do not consider this a limitation if

the comparison is made with postprocessing methods. My philosophy is that postprocessing is always

capable (potentially) of producing better results, but perhaps only marginally so. A posterior analysis

can usually bring more resources to bear on the data (more time and computing horsepower). can

smooth out noise and cull the best samples. and can invert all the data in aggregate. This is not the

problem I address: my approach is constrained by the needs of practical exploratory systems. As stch.

the assumptions and approximations I introduce are conditioned by: (1) lack of prior knowledge: (2)

real-time, incremental response: and (3) cost-effective technology.

First. the constraint is inherent to the class of applications with which I am concerned. A

machine intelligence exploring an unknown environment must start with a blank slate and incrementally

"learn" about its surroundings. However. as more information accumulates. there arises a potential

for using this "prior" knowledge to incorporate new data in the model. I have not addressed such a

scenario so far. but discuss it briefly in the next section.

Second. a practical system must respond to the environment in a timely manner. preferably.

using all information at its disposal. People behave analogously, making judgments and taking actions

according to immediate needs. Though long deliberation or later reflection might reveal a better

solution, a less-optimal but faster response is often warranted. There are two components here. If

there are computational resources available, later "deliberation" or background processing might be

applied to improve modeling results (see [terative Techniques in the next section). Also. data

ninnthin, rather than Filtering or estimating coutld he used before incorporating new information in the

model: the tradeoff is in the delay imposed by a causal approach.

Finally. I have made several approximations for the sake of computational efficiency. The

assumption of stationary error, for example. facilitates a decomposition into preprocessing and real-time

components. With more computational resources. !ucli constraints could he relaxed and more accurate

models could result. The assumption of a homogeneous medium is appropriate for short-range sonars.
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but longer-range systems would have to deal with refraction and multipath errors. With today's

technology, a ray-tracing solution, for example, is impractical for each event. Theoretically. though.

the detectivity and localization functions can be computed with similar techniques. Mv point is that a

numerical model offers a powerful framework for today's applications, and the scope of such an

approach can only expand as computational technology evolves.

7.3 ISSUES TO EXPLORE

My goals in this thesis have been to elaborate a philosophy of modeling and to present a practical

formulation with substantive results. I feel the surface has only been scratched, though, and much

remains to be explored. Part of this will be to refine and further validate the modeling framework, as I

discuss in the preceding section. Other research is needed to build on this work toward more complete

applications for intelligent, autonomous systems. Also, there are several interesting possibilities that

occurred to me as this thesis evolved. In this section I highlight a few of the more promising areas.

7.3.1 Iterative Techniques

The backprojection and summation method is the simplest approach to reconstruction. and I

adopted it in this work for the sake of computational. efficiency. However, the more adva.aced

reconstruct;on applications in o her fields almost exclusively use such techniques as ART and its

variants. It seems probable tha. an iterative formulation of stochastic backprojection can also offer

significant advantages in underwater applications. Though I am referring mainly to an approach that

redistributes the signal over each range surface-analogous to the redistribution of a ray sum over the

corresponding ray-iterative positioning (as in Section 4.3) or a combination of the two seems

plausible.

For postprocessing use. where computational resources are not at such a premium as in real-time

applications, iterative modeling would probably be most attractive for now. However. as more

computing power moves to smaller packages at lower cost, a threshold of practicality will inevitably be

croqed A, T mentioned in the last qection. a backgrotnd-approach. which would allocate reotirce" to

iterative model refinement while real-time demands are low, might be the first step. Eventually. as size

and performance considerations allowed, an iterative numerical technique would probably become the

preferred approach to merging most events. At the earliest stages of model evolution, however.

iteration is impractical an :ould even magnify error.
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7.3.2 Bootstrap Modeling and Positioning

Concurrent modeling and positioning is also an iterative process in which information flows

bidirectionallh bet~een the two functions. To merge new events, an estimate of the sensor's location is

needed: at the same time. the global model serves as a reference against which local models are

compared and a position estimate extracted. In such an approach is a threshold of error beyond which

the "solution" diverges. Certainly human beings get lost, so we cannot look to ourselves as an

existence proof of the perfect relative-positioning system.

The problem is particularly acute when starting from a clean slate, without a model for

navigational reference. I sidestepped this difficulty in the positioning simulations (Section 4.3) by using

a prior model from a previous simulation, but expect to do more research in this area. It seems clear.

though. that the viability and performance of bootstrap modeling depends on the algorithms. sensor

characteristics, sampling rate. and the environment itself. Where the surroundings are rich in detail.

the sampling rate is hgh. and the s,-nnr p'a'form moves slowly, no special considerations may be

needed. In other circumstances. some kind of strategy to quickly establish reference points will lead tc

best results.

7.3.3 Strategies

An intelligent exploratory probe should have some notion of any holes in its knowledge base and

of the most fruitful approaches to filling them in accurately and economically. Recovery from a power

failure, loss of a sensor, and bootstrap navigation motivate further investigation of choosing the right

sensor, range/resolution. pattern of exploration, and so forth. Because the models I have discussed

also represent the system's ignorance at any moment, they offer a basis for developing plans to remove

knowledge gaps. As - mentioned in the last section, a preliminary strategy to establish navigation

might call for straight, even- elocity tracks so that distinctive landmarks are surveyed as a long-baseline

reference frame. A spiral trajectory to incrementally expand the modeled area is another possibility.

For a multisensor platform. different sensing modalities or different combinations of range and

reolhition would he suited to different phases of model development, for example. low-resolutiw. L

range scans followed by more detailed, close-up investigation-a coarse-to-fine strategy. It is

interesting to note that the backprojection approach can also be applied to omnidirectional sensors.

Sometimes such a sensor would be preferred to a narrow-beam type. for example, localization of one or

more targets in a large volume. With a narrow-beam sonar, the time required to scan
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omnidirectionally can be great: yet. a sensor with omnidirectional sensitivity can localize over four

events (from four locations if one does not lie in the same plane).

7.3.4 Virtual Models

In all the implementations de-eloped for thesis research, a fixed modeling region is used for

convenience. Widely-ranging systems, though, are not likely to maintain the necessarily large model in

memory. especially if many features are considered or high resolution is desirable. This does not seem

to be a significant drawback if auxiliary storage can be used. For example, model segments could be

swapped to a hard disk as the sensor moved out of the corresponding region, and new segments

swapped into memory. This is just a virtual memory scheme, and a clever implementation could take

advantage of memory-management hardware. A straightforward extension could use a model-segment

cache. and a "smart" look-ahead-cache manager with a knowledge of the platform trajectory and sensor

envelopes.

7.3.5 Dynamic Modeling

Though I have only considered static environments so far, it seem plausible to extend numerical

modeling to dynamic environments, where there may be objects in motion-other vehicles, for

example. Such an application, the target-association problem, motivates the approach to image

reconstruction developed by Das ad Boerner [1978] and by Rockinore et al. [1979], and is proposed for

passive tracking by Rocktnore [1981]. Moravec [1987b] also mentions the possibility of detecting and

tracking objections across the time dimension using "snapshots" of certainty grids.

Some accounting for moving objects probably should be made to avoid smearing the model with

multiple target tracks: however, with repetitive sensing in a stochastic model they would eventually be

decayed as "noise." Exactly how to represent such a dynamic model is an open question. though.

Saving a complete three- or higher-dimensional model at regular intervals is an inefficient and

impractical approach. Some interesting possibilities are run-length encoding along the time axis or a

sequence of differencing. where only newly modified elements are recorded at each time step. This

leads directly to "fingerprinting" applications for change detection in monitored environments.

7.3.6 Multifeature Modeling

I have purposely maintained a generality with a mind to future applications that hold my interest.

As I have mentioned. a successful approach to modeling for more intelligent probes must accommodate
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multiple redundant sensors with complementary characteristics. For example, such range sensors as

sonar or lasers can create a good three-dimensional representation for modeling and interpretive

processes that analyze data from imaging sonars. video. digital still cameras, and other sensors. My

perspecti'e is that there is no one paradigm to encompass all multisensor techniques. Rather. it calls

for a flexible framework that can be tailored to different applications and that accommodates multiple.

concurrent, cooperating processes. each knowledgeable in its domain.

7.3.7 Other Representations

I already use several representations including 2-D arrays. 3-D arrays. 3-D arrays of vectors.

and vector lists of different kinds. The arrays can be tiled and passed to graphics routines as lists of

vertices. polygons, surface normals, and so on. The structures are compatible with such architectures

as pipelines, vector and array processors, or massively parallel systems. Though performance has been

adequate with existing hardware, vector lists could be "streamed" to a digital signal processor or other

pipelined architecture for more demanding applications. And I see no problem in formulating parallel

decompositions that would open the door to more powerful numeric modeling.

For future work. though, I am inclined toward octree, hextree. and n-tree representations

,......... ,n T,,i....,, 1080: Meaghcr. !920. 1982: Gillespie and Davis, 1981]. Several researchers in

the field have demonstrated a suite of octree tools for image processing [Gillespie and Davis. 1981].

display (Doctor and Torborg, 1981], pattern recognition [Chaudhuri. 1985], world modeling [Connolly.

1984: Shneier et al.. 1984: Jain and Grosky, 1987]. volumetric medical imaging [Meagher. 1985].

obstacle avoidance [Faverjon. 1984]. and representation of moving objects (Nash and Ahirja. 1983].

The main advantages I see are: a spatial decomposition that facilitates description of unstructured

environments: a hierarchical representation suited to multidimensional data of varying resolution: and

an economy of representation for an exploratory probe following an unpredictable trajectory. A

hextree. for example. could also represent the time dimension directly and economically.

7.3.8 Multidimensional Feature Extraction

In Section 5.4 1 point out the limitations of the simple technique I use for extracting three-

dimensional surfaces: for more sophisticated applications other methods must be found. I see no

insurmountable difficulty in formulating such surface estimators, but the issues to resolve are efficiency

and accuracy. Simple candidates include: search (look for local probability peaks and link with

neighboring peaks): an extension of two-dimensional convolution edge detectors to three-dimensional

surface detectors (first and second difference, gradient): and morphological operations (stochastic
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thinning or skeletonizing). Tougher problems must be addressed in dynamic or multifeature modeling.

However. the pattern-analysis community has compiled a rich body of literature in this area, and it

seems likely that many techniques can be applied directly or modified to suit a nondeterministic context.

7.3.9 Bookkeeping

There is a justifiably strong interest in multisensor techniques these days with an eye to current

and future applications. My conviction is that some accounting system is needed in such work to avoid

a degeneration into pure heuristics. The energy balance I use in the acoustic domain (the sonar

equation) is a reasonable approach for a single sensor, but more subtle issues arise when disciplinary

boundaries are crossed. Quantitative measures of performance, fidelity, convergence, and confidence

should guide our applications and experimentation.

My apologies go to Dr. Shannon for loose tisage of the word information. I feel, though, that

Information Theory [Shannon, 1949] may offer a common token for knowledge exchange in a

multidimensional, probabilistic context. As a simple example, the average information in a model can

be characterized by its entropy, H. as:

J-1

H(0'S) = - Eas og 2(os)
J-0

where as is the scattering probability used earlier and J is the number of voxels in the model. As the

information in a model increases (scattering probabilities approach 0 or I) entropy decreases. If you

consider the probability histogram in Section 4.2. it is easy to see that the entropy will converge

similarly toward some constant value. Though that value depends on the different factors I discussed.

the rate of change in entropy, dH/dt, might serve as an indicator of model convergence.

Individual events can also be characterized by their information content with respect to the model.

and different combinations of range, resolution, beam pattern, and S/N ratio would have distinctive

measures of entropy. Such measures offer a basis for formulating scanning strategies. comparing the

results of different modeling algorithms, or characterizing the terrain. To cast an active -en-or with

transmitter and receiver in a communications framework, the channel iq ,,,, Ow .... .. I

space being interrogated. Here we know the information potential in the signal we transmit and some

measure of what we receive, but want to infer something about the channel through which it passed-

the medium is the message?
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7.4 MODELING APPLICATIONS

Mv research so far has focused on modeling and computational issues to build a foundation for

future efforts. Mv immediate goal now is a full implementation of concurrent modeling and positioning

for more autonomous systems. However. the results of thesis research suggest to me that the level of

development is already sufficient to serve several underwater applications. These fall loosely into three

broad categories: (I) mapping and survey: (2) piloting aids for manned systems: (3) world modeling for

autonomous systems.

First. the approach offers the benefit of real-time feedback for survey and exploration.

particularly for such professionals. as geologists or archaeologi3ts requiring more complete dimensional

information than is typically available. In this group I include applications of shipboard mapping (Sea

Beam). towed vehicles (Sea MARC), as well as ROV's and manned submersibles for small-scale. high-

resolution survey. Of course, good navigation is the determining factor for real- or near-real-time

shipboard modeling. For large-scale applications using satellite data. most navigation can be turned

around ,ithin a few hours on today's surveys: as GPS coverage increases, the situation can only

improNe. For smaller-scaie operations using acoustic positioning or shore stations, smoothed

naigation is generated with little delay.

Incremental modeling and display give immediate feedback on the quality of the data and the

coverage obtained, ind allow an investigator to modify his survey plan according to results. Because

the processing is faster than the data-collection rates for the applications I have considered.

computational ,LzT, rce - uld also be Je~oted to interactive manipulation of the model. Perspective

views from different vantage points, color-table manipulation to highlight different features, feature

location and dimensioning with a mouse and pointer, and depth profiles from bathymetry have all been

demonstrated with stochastic models on an interactive basis. It is also possible to finish the cruise with

a hard-copy product reflecting the full data set. Though this would not eliminate shore-based

postprocessing for best results, it offers researchers more productive time at sea.

Second. for man-in-the-loop systems-remotely operated vehicles or manned submersibles--real

time modeling can augment the operator's tunnel-vision perspective by presenting a global view of the

surroundings. In the laboratory. the model has been used to generate a dynamic display with a

representation of the vehicle superimposed on the image. Depth and range information can be provided

using color contour maps or a shaded perspective view. Such an auxiliary display gives the pilo, a

more easily assimilable representation of his surroundings, and as the model's ceriainty increased.

could be used directly for low-visibility piloting.
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This can improve operator efficiency, lessen fatigue, decrease performance time for many tasks,

enhance the safety of working underwater, and reduce the risk of damage or loss of the vehicle.

Significant ecoromic benefits would also accrue. Day rates for sophisticated ROV operations including

crew. surface support. and a vessel. may exceed ten thous nd dollars. More significantly, on "i oil

production platform idled while an ROV completes emergency repairs, lost revenue is measurcd 'n th.

hundreds of thousands of dollars a day. A reduction in task-completion times of only a few percent

would show substantial saving.

Third, real-time stochastic modeling offers a powerful tool for autonomous vehicles. This thesis

has mainly addressed the needs of such intelligent systems and I will not reiterate the advantages here.

For those applications in which external navigation is available, the current implementation offers a

context in which higher-level processes can function. Moravec [1987a, b] points to implementations of

obstacle avoidance and path planning in a two-dimensional certainty grid that might also be extended to

a three-dimensional stochastic model. Yoerger and Slotine [1987] also formulate a control methodology

that allows an underwater vehicle to track an environmental model's potential field: this could be

applied to a "probability field" in a similar manner.

Beyond these immediate applications, other multisensor implementations seem attractive for

marine science research and for underwater robotics. Multifrequency sonars are appearing and, if

used with a bathymetric model as in Chapter 6, could lead to more accurate and informative acoustic

modeling applications. Optical imagery also could benefit from three-dimensional range information.

For example. a simple surface projection of the high-frequency camera data would visually complement

a coarser shape derived from a scanning laser. A better approach would use the range data. a lighting

model, and an optical propagation model to compensate for attenuation and noise in color imagery.

The interpretation of subbottom profiles might benefit from a composite presentation of registered

bathymetric or sidescan models. The spatial distribution of magnetic anomalies, gravity, temperature.

and other ocean features may offer new insights when considered with bottom shape and surface or

subsurface properties.

We may be at the threshold of a new era for the exploration and understanding of the undersea

environment. The remote sensors and vehicles, the computational technology and algorithms, and nhe

tool- and techniqcies for visutalization-all are evolving apace. Phvsicallv. analvticallv, and

conceptually, they extend our reach. Applied at sea, they allow more timely and more complete

feedback, reducing cost and delay in the postprocessing tedium. And with the new information

technologies, interesting results and techniques will be communicated more quickly. widely. and

effectively.
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